1. Ahmed, N. K., Atiya, A. F., Gayar, N. E., & El-Shishiny, H. (2010). An empirical comparison of machine learning models for time series forecasting. Econometric Reviews, 29(5-6), 594-621.
2. Bajlan, S., Fllah Poor, S., & Dana, N. (2017). Predicting stock price trends using a modified support vector machine with hybrid feature selection, Journal of Financial Management Perspective, 17(1), 69-86. (In Persian)
3. Canziani, A., Paszke, A., & Culurciello, E. (2016). An analysis of deep neural network models for practical applications. arXiv preprint arXiv:1605.07678.
4. Cartea, A., & Jaimungal, S. (2013). Modelling asset prices for algorithmic and high-frequency trading. Applied Mathematical Finance, 20(6), 512-547.
5. Das, G., Lin, K. I., Mannila, H., Renganathan, G., & Smyth, P. (1998, August). Rule Discovery from Time Series. In KDD (Vol. 98, No. 1, pp. 16-22).
6. Deng, Y., Bao, F., Kong, Y., Ren, Z., & Dai, Q. (2016). Deep direct reinforcement learning for financial signal representation and trading. IEEE transactions on neural networks and learning systems, 28(3), 653-664.
7. Esmaeili, Z., Abbasi, E., Fallahshams, M. (2018). Prediction of initial public offering short-term performance using nearest neighbor and support vector machine models. ـJournal of Financial Management Perspective, 8(21), 9-27. (In Persian)
8. Ganz, F., Puschmann, D., Barnaghi, P., & Carrez, F. (2015). A practical evaluation of information processing and abstraction techniques for the internet of things. IEEE Internet of Things journal, 2(4), 340-354.
9. Gudelek, M. U., Boluk, S. A., & Ozbayoglu, A. M. (2017, November). A deep learning based stock trading model with 2-D CNN trend detection. In 2017 IEEE Symposium Series on Computational Intelligence (SSCI) (pp. 1-8). IEEE.
10. Kalchbrenner, N., Grefenstette, E., & Blunsom, P. (2014). A convolutional neural network for modelling sentences. arXiv preprint arXiv:1404.2188.
11. Karpathy, A., Toderici, G., Shetty, S., Leung, T., Sukthankar, R., & Fei-Fei, L. (2014). Large-scale video classification with convolutional neural networks. In Proceedings of the IEEE conference on Computer Vision and Pattern Recognition (pp. 1725-1732).
12. Kalaitzakis, K., Stavrakakis, G. S., & Anagnostakis, E. M. (2002). Short-term load forecasting based on artificial neural networks parallel implementation. Electric Power Systems Research, 63(3), 185-196.
13. Kim, T., & Kim, H. Y. (2019). Forecasting stock prices with a feature fusion LSTM-CNN model using different representations of the same data. PloS one, 14(2), e0212320.
14. Kim, Y. (2014). Convolutional neural networks for sentence classification. arXiv preprint arXiv:1408.5882.
15. Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. In Advances in neural information processing systems (pp. 1097-1105).
16. Kuo, S. C., Li, S. T., Cheng, Y. C., & Ho, M. H. (2004, December). Knowledge discovery with SOM networks in financial investment strategy. In Fourth International Conference on Hybrid Intelligent Systems (HIS'04) (pp. 98-103). IEEE.
17. Pakbaz, M., Davari, M., & Balgourian, M. (2018). Investigating the predictive power of information content of accounting profit announcement by technical analysis signals. Journal of Financial Management Perspective, 20(4), 115-131. (In Persian)
18. Ramoni, M., Sebastiani, P., & Cohen, P. (2002). Bayesian clustering by dynamics. Machine learning, 47(1), 91-121.
19. Ratner, M., & Leal, R. P. (1999). Tests of technical trading strategies in the emerging equity markets of Latin America and Asia. Journal of Banking & Finance, 23(12), 1887-1905.
20. Sezer, O. B., & Ozbayoglu, A. M. (2018). Algorithmic financial trading with deep convolutional neural networks: Time series to image conversion approach. Applied Soft Computing, 70, 525-538.
21. Sezer, O. B., & Ozbayoglu, A. M. (2019). Financial trading model with stock bar chart image time series with deep convolutional neural networks. arXiv preprint arXiv:1903.04610.
22. Shen, F., Chao, J., & Zhao, J. (2015). Forecasting exchange rate using deep belief networks and conjugate gradient method. Neurocomputing, 167, 243-253.
23. Sweeney, R. J. (1988). Some new filter rule tests: Methods and results. Journal of Financial and Quantitative Analysis, 285-300.
24. Wen, Y., & Yuan, B. (2018, March). Use CNN-LSTM network to analyze secondary market data. In Proceedings of the 2nd International Conference on Innovation in Artificial Intelligence ,pp. 54-58.