بررسی تأثیر روحیه سرمایه‌گذاران بر دام‌های مالی رفتاری در بورس اوراق بهادار تهران

نوع مقاله : علمی - پژوهشی

نویسندگان

1 استادیار گروه مدیریت بازرگانی، دانشگاه پیام نور، تهران، ایران.

2 کارشناسی ارشد مدیریت بازرگانی، دانشگاه پیام نور، تهران، ایران.

چکیده

این پژوهش با توجه به اهمیت تصمیم­گیری­های مالی در زندگی افراد، تاثیر روحیات را بر دام­های مالی رفتاری سرمایه­گذاران بورس اوراق بهادار تهران بررسی کرده است. دام­های مالی رفتاری همان سوگیری­ها یا تورش­های رفتاری هستند که مانع تصمیم­گیری­های درست و بهینه می­شوند. در مالی رفتاری، ویژگی­های رفتاری که بر فرآیند تصمیم­گیری­های افراد موثرند مورد مطالعه قرار می­گیرند. این ویژگی­ها تورش­های رفتاری نامیده می­شوند. حالت­های روحی (روحیات) بیشتر بر اساس احساسات افراد شکل می­گیرد؛ یعنی فرد در درون خود از هر کنش بیرونی، حالتی را حس می­کند و آن را بروز می­دهد. فرضیه­های پژوهش از روش الگوسازی معادلات ساختاری با رویکرد حداقل مربعات جزئی استفاده شد. نتایج نشان داد دام­های مالی رفتاری سرمایه­گذاران تحت تاثیر مستقیم دو حالت روحیات بالا (شیدایی) و روحیات پایین (افسردگی) است، همچنین دام­های مالی رفتاری بیشتر از همه متأثر از روحیات بالا است.

کلیدواژه‌ها


عنوان مقاله [English]

Investigating the Impact of Mood on the Behavioral Finance Trap of Investors in Tehran Stock Exchange

نویسندگان [English]

  • Behrouz Larisemnani 1
  • Akram Dehkhoda 2
1 Assistant Prof, Department of Business Administration, Payame Noor University, Tehran, Iran.
2 Master of Business Administration, Payame Noor University, Tehran, Iran.
چکیده [English]

This study investigates the impact of morale on the behavioral finance traps of Tehran Stock Exchange investors considering the importance of financial decisions in the lives of individuals. Behavioral finance traps are behavioral biases or biases that impede good and optimal decision making. In behavioral finance, the behavioral characteristics that influence individuals' decision-making process are studied. These features are called behavioral biases. A mental state (moods) are more based on the emotions of the individual, that is, the individual feels and expresses a state within each external action. Structural equation modeling with partial least squares approach was used to test the research hypotheses. The results showed that investors' behavioral financial traps are influenced by both high and low moods. Also, behavioral finance traps are most affected by high morale.

کلیدواژه‌ها [English]

  • Behavioral Finance Traps
  • High Moods
  • Low Moods
1. Amiri Nia, M. (2014). The Emotion and Behavior of Speech, Arasteh Publishing. (in Persian)
2. Assadi, G., Morshedi, F. (2019). Investigating the effect of Investor Sentiment on the stock price crash risk in Tehran Stock Exchange. ـJournal of Financial Management Perspective, 9(25), 9-30. (in Persian).
3. Badri, A. (2009). Behavioral financial knowledge and asset management. Tehran, Kayhan. (in Persian)
4. Badri, A., & Shavakhi Zavareh, A. (2010). Reference points, stock prices and trading volume: Evidence from Tehran Stock Exchange, Quarterly Journal of the Stock Exchange, 12, 152-174. (in Persian)
5. Baraktin, M., Tavakoli, M., Rumi, H., Maroofi, M., & Salehi, M. (2007). Standardization, validity and validity of Yang Mania Scale. Psychology, 2, 150-166. (in Persian)
6. Barber, B.M., & Odean, T (2001). Boys will be boys: gender, overconfidence, and common stock investment.The Quarterly journal of economics, issue 1, 116, 261-292.
7. Beck, A.T., Brown, G., Steer, R.A., Eidelson, J.I., & Riskind, J.H. (1987). Differentiating anxiety and depression: A test of the cognitive content specificity hypothesis. Journal of Abnormal Psychology, 96(3), 179-183.
8. Borji Dolatabadi, E. (2008). paradigm governing the financial markets, Journal of tadbir, 191, 31-35. (in Persian)
9. Cooper, J.F, Gutierrez, A., & Marquis, R.J. (2005). Modeling the Effect of Behavioral Bias on Capital Market Stagnation Based on Interpretive-Structural Approach (ISM). Journal of Financial Engineering and Securities Management,19, 111-130.
10. Craft, N., Gregory, B., & Terri, L. (1987). Cognitive Elements in the implementation of NewTechnology: Can Less information Provide More Benefits? Management & Entrepreneurship, 20, 99-110.
11. Davari, A., & Rezazadeh, A. (2014). Structural Equation Modeling with PLS Software, Printing turn: Second, University Jihad Publishing Organization. (in Persian)
12. Dobson, K.A., & Mohammad-khani, P. (2007). Psychometric coordinates of the Beck Depression Inventory 2 in a large sample of people with major depressive disorder, Special issue of rehabilitation in mental illnesses and disorders. 8(29), 80-86.
13. Dunn, J.T., Graves, J.R., & Odin, E. (2001). Investigating the behavioral biases of investors in Tehran Stock Exchange based on structural equation model. Financial Management Strategy, 7, 113-133.
14. Fengyan, C., Zhiyong, Y., Robert, S., Wyer, J.r., & Jing, A. (2017). The Interactive effects of bitter flavor and mood on the decision to spend or save money. Journal of Experimental Social Psychology, 70, 48-58.
15. Festinger, L. (1957). A Theory of Cognitive Dissonance. California: Stanford University Press.
16. Fisher, K.L., & Statman, M. (2000). Investor Sentiment and Stock Returns, Financial Analysts Journal (FAJ), 56(2), 16-23.
17. Flannery, D.J. (2004). Initial Behavior Outcomes for the Peace Builders Universal School-Based Violence Prevention Program, Developmental Psychology, 39 (2), 292–308.
18.  Ghanae, Z., Farahani, M.N., Abdolahi, M.H., & Shokri, O. (2004). The effect of cognitive fatigue and emotional intelligence on solving cognitive problems. Cognitive Science News, 6 (3 , 4), 63-74. (in Persian)
19. Gholami Fesharaki, M. (2018). Structural Equation Model and Its Application in Psychological Studies: A Review Study. Journal of Clinical Psychology and Personality, 16, 253-265. (in Persian)
20. Graham, J., Harvey, C., & Rajgopal, S. (2011). The economic implications of corporate financial reporting. Journal of Accounting and Economics, 40 (3), 3-73.
21. Hassnavand, R. (2016). Weighing and Identifying Investors' Behavioral Strokes in the Stock Market. 5th International Conference on Accounting and Management and 2nd Conference on Entrepreneurship and Open Innovation, Pages: 7. (in Persian)
22. Hinojosa, J.A., Fernández, U., Folgueiras, J., Alberta, G., Santaniello, M.A., & Pozoa, A. (2017). Negative induced mood influences word production: An event related potentials study with a covert picture naming task. Neuropsychologia, 95, 227-239.
23. https://fa.wikipedia.org, Major depressive disorder, Free Encyclopedia
24. Islami Bidgoli, G.H., & Kordlouei, H. (2010). Behavioral finance, the transition from standard finance to neurofinas, Journal of Financial Engineering and Securities Management (Portfolio Management), 1(1), 19-36. (in Persian)
25. Jami al-Ahmadi, M., & Razdar, M. (2014). Behavioral bias and its effect on investor decision making in the stock market. New International Conference on Accounting Management and Economics.COI Code: MAEICN01_020. Pages: 6. (in Persian)
26. Kahneman, D., Slovic, P., & Tversky, A. (1982). Judgment under uncertainty: heuristic and biases, New York and Cambridge: Cambridge University Press.
27. Kahneman, D., Knetsch, J.L., & Thaler, R.H. (1990). Experimental Tests of the Endowment Effect and the Coase Theorem. Journal of Political Economy, 98(6), 1325–1348.
28. Kahneman, D., & Tversky, A. (1984). Modeling the Effect of Behavioral Bias on Capital Market Stagnation Based on Interpretive-Structural Approach (ISM). Journal of Financial Engineering and Securities Management, 19, 111-130.
29. Khaki, Gh. Research method, Descriptive survey research method, reflection publication. (2012). (in Persian)
30. List. (2003). Modeling the Effect of Behavioral Bias on Capital Market Stagnation Based on Interpretive-Structural Approach (ISM). Journal of Financial Engineering and Securities Management, 19, 111-130.
31. Lutz, B., & Mann, K. (2004). Modeling the Effect of Behavioral Bias on Capital Market Stagnation Based on Interpretive-Structural Approach (ISM). Journal of Financial Engineering and Securities Management, 19, 111-130.
32. Masoudi, H. (2012). Lisrel training in a few minutes, Success in personal life, grouping: Software training, design software, Nilbook.
33. Montier, J. (2002). The effect of behavioral factors and the reflection of latency bias on investors' trading behavior. Accounting and Auditing Studies, Fourth Year, No. 14. Pages: 21.
34. Montier, J. (2003). Irrational Pessimism and the Road to Revulsion, research report, Dresdner Kleinwort Wastein.
35. Parhizgar, M.M, & Aghajani Afroozi, A.A. (2012). Advanced Research Methodology in Management with Applied Approach, Master of Management, Payam Noor university. (in Persian)
36. Pashootanizadeh, H., Ranaei Kordshouli, H., Abbasi, A., Moosavihaghighi, M. (2020). Simulation the Model of Effects of Behavioral and Macroeconomic Factors on the Tehran Stock Exchange Index with Using System Dynamics Approach. ـJournal of Financial Management Perspective, 10(29), 89-124. (in Persian).
37. Pompian, M.M., Badri, A translation. (2015). Behavioral Finance & Wealth Management, Kayhan Publishing Company. (in Persian)
38. Pompian, M.M. (2006). Behavioral biases, abnormal trading volume and unusual stock returns, Asset Management and Financing, 4, 96-81.
39. Rahnamai Rudposhti, F., Hibati, F., & Mousavi, R. (2003). Investigating the Mathematical Pattern of Selecting Investment Portfolio Based of Behavioral Finance, Journal of Financial Engineering and Securities Management. 3(12), 17-37. (in Persian)    
40. Rahnamai Rudposhti, F., & Tajmir Riahi, H. (2014). Modeling the Effect of Behavioral Bias on Capital Market Stagnation Based on Interpretive-Structural Approach (ISM). Journal of Financial Engineering and Securities Management, 19, 111-130. (in Persian)    
41. Santa-Clara, P., & Valkanov, R. (2003). Modeling the Effect of Behavioral Bias on Capital Market Stagnation Based on Interpretive-Structural Approach (ISM). Journal of Financial Engineering and Securities Management, 19, 111-130.
42. Seyed-Abaszadeh, M.M, Pashoy, G.H., Khezri-Azar, H., & Amani, J.  (2018). Introduction to structural equation modeling by PLS method and its application in behavioral sciences, printing turn: 1, Urmia University Press. (in Persian) 
43. Shahrabadi, A., & Yousefi, R., (2007). Introduction to Behavioral Finance, Stock Exchange Monthly, 69, 51-70. (in Persian)
44. Shefrin, H.J., & Statman, M. (1984). The Disposition to Sell Winners too early and Ride Losers Too Long: Theory and Evidence, The Journal of Finance, 40, 777-790.
45. Tajmir Riahi, H., & Dejdar, M. (2017). Ranking Investors' Behavioral Influences against Important Political News and Rumors with Emphasis on Nuclear Negotiation Period, Investment knowledge. 6(24), 1-20. (in Persian)
46. Tekce, B., Yilmaz, N., & Bildik, R. (2016). What Factors Affect Behavioral Biases? Evidence from Turkish Individual stock Investors. Research in International Business and Finance, 37, 515-526.
47. Thaler, R.H., & Benartzi, S. (2004). Modeling the Effect of Behavioral Bias on Capital Market Stagnation Based on Interpretive-Structural Approach (ISM). Journal of Financial Engineering and Securities Management, 19, 111-130.
48. Thaler, R.H., & Benartzi, S. (2004). Save More Tomorrow: Using Behavioral Economics to Increase Employee Saving. Journal of Political Economy, 112(1), 64-87.
49. Vartanian, O., Fraser, B., Saunders, D., Suurd Ralph, C., Harris, R.L., Morgan, C.A., & Cheung, B. (2018). Changes in mood, fatigue, sleep, cognitive performance and stress hormones among instructors conducting stressful military captivity survival training. Physiology & Behavior, 194, 137-143. 
50. Young, R.C., Biggs, J.T., Ziegler, V.E., & Meyer, D.A. (1978). Young Mania Rating Scale (YMRS) In: Handbook of Psychiatric Measures. Washington, DC: American Psychiatric.