1
استادیارگروه مالی و بیمه، دانشکده مدیریت دانشگاه تهران
2
** استادیارگروه مالی و بیمه، دانشکده مدیریت دانشگاه تهران.
چکیده
در پژوهش حاضر، مدلی برای پیشبینی روند قیمت سهام برپایهی ماشین بردار پشتیبان وزندهیشده توسط حجمهای روزانه معاملات، همراه با روش انتخاب ویژگی هیبرید F-SSFS ارائه میشود. به منظور ارزیابی دقت پیشبینی، مدل پیشنهادی با مدل ماشین بردار پشتیبان ساده همراه با انتخاب ویژگی هیبرد و نیز با روشهای انتخاب ویژگی مرسوم از جمله بهره اطلاعات[1]، عدم قطعیت متقارن[2] و انتخاب ویژگی بر پایه همبستگی[3]، از طریق انجام آزمون تی زوجی، مقایسه میشود؛ همچنین بهعنوان مجموعه ویژگیهای اولیه که در واقع ورودی ماشین بردار پشتیبان تعدیلیافته هستند، از شاخصهای تحلیل تکنیکال و شاخصهای آماری که برای 10 سهم محاسبه شدهاند، استفاده میشود. نتیجه این پژوهش نشان میدهد که عملکرد ماشینبردار پشتیبان وزندهیشده، در مورد مسئله پیشبینی روند قیمت سهام، به میزان قابلتوجهی بهتر از ماشین بردار پشتیبان ساده است. علاوه براین، نتایج عملیاتی نشانمیدهد که ماشین بردار پشتیبان وزندهیشده همراه با انتخاب ویژگی هیبرید پیشنهادی، بالاترین میزان دقت پیشبینی را نسبت به سه روش انتخاب ویژگی دیگر دارد. براساس نتایج این پژوهش میتوان ادعا کرد مدل VW-SVM همراه با انتخاب ویژگی F-SSFS عملکرد بهتری در پیشبینی قیمت سهم، نسبت به روشهای موجود دارد.2. Information Gain3. Symmetrical uncertainty4. Correlation based feature selection
Abu-Mostafa, Y. S., & Atiya, A. F. (1996). Introduction to financial forecasting.
Applied Intelligence, 6(3), 205â213.
Badri, Dawaloo & Dori Nokarani (1395). Studying macroeconomic factors on stock market performance, Journal of financial management perspective. 13: (9-35).
Chavarnakul, Thira, and David Enke (2008). Intelligent technical analysis based equivolume charting for stock trading using neural networks. Expert Systems with Applications 34.2: 1004-1017.
Chen, Y.-W., & Lin, C.-J., (2005). Combining SVMs with various feature selection strategies. Available from: .
Choudry, R. & Grag, K. (2008). A Hybrid Machine Learning System for Stock Market Forecasting. World Academy of Science, Engineering and Technology, 39.
Cristianini, N., & Shawe-Taylor, J. (2000). An introduction to support vector machines.Cambridge: Cambridge University Press.
Dash, M. et al., (2002). Feature selection for clustering â a filter solution. In Proceedings of the second international conference on data mining :115â122.
Ebadi, Forcasting Stock index price in Tehran stock exchange using artificial network, Thesis for master degree, Bu Ali Sina University, Faculty of economy and social science.
Eslami Bidgoli (1393). Shabanpoorfard, Relevency of trading volume and return case study in Tehran stock exchange considering intraday volume and excluding the U effect, Journal of Financial Management Perspective, 6: 45-63.
Fallahpour, Golarzi, Fatoorechian, Stock Price Movement Prediction Using
Support Vector Machine Based on Genetic Algorithm in Tehran Stock Exchange Market. Journal of financial research. 15(2), 269-288.
Huang, C.-L., Chen, M.-C., & Wang, C.-J. (2007). Credit scoring with a data mining approach based on support vector machines. Expert Systems with Applications, 33(4), 847â856.
Huang, C.-J., Dian-Xiu & Chuang, Y.-T. (2007). Application of wrapper approach and composite classifier to the stock trend prediction. Expert Systems with Applications, 34(4), 2870â2878.
Hashemi, Analysis of behavioral factors effect on forcasting stock price using regression feedforward artificial neural network, Thesis for master degree, University of Science and Culture.
Kohavi, Ron, and George H. John (1997). Wrappers for feature subset selection. Artificial intelligence 97.1: 273-324.
Lawrence, S., Giles, C. L., & Tsoi, A.-C. (1997). Lessons in neural network training: Over fitting may be harder than expected. In Proceedings of the fourteenth national conference on artificial intelligence, AAAl-97: 540â545.
Lee, Ming-Chi (2009). Using support vector machine with a hybrid feature selection method to the stock trend prediction. Expert Systems with Applications 36.8: 10896-10904.
Leung, M. T., Daouk, H., & Chen, A. S. (2000). Forecasting stock indices: A comparison of classification and level estimation models. International Journal of Forecasting, 16, 173â190.
Min, J. H., & Lee, Y.-C. (2005). Bankruptcy prediction using support vector machine with optimal choice of kernel function parameters. Expert Systems with Applications, 28(4), 603â614.
Monajemi, Ebrazi, Rayati, (1388). Stock price prediction in Tehran stock exchange using artificial neural network. Journal of financial economy, 6(3), 1-26.
Tan, T. Z., Quek, C., & See, Ng. G. (2007). Biological brain-inspired genetic complementary learning for stock market and bank failure prediction. Computational Intelligence, 23(2), 236â261.
Theodoridis, S., & Koutroumbas, K. (2008). Pattern Recognition. Academic Press.
Yu, L., & Liu, H., (2003). Feature selection for high-dimensional data: A fast correlation-based filter solution. In Proceedings of the 20th international conference on machine learning: 856â863.
Żbikowski, Kamil. (2014). Using volume weighted support vector machines with walk forward testing and feature selection for the purpose of creating stock trading strategy. Expert Systems with Applications. 10.001.
Zhang, Xiangzhou, et al (2014). A causal feature selection algorithm for stock prediction modeling. Neurocomputing, 142: 48-59.
باجلان, سعید, & فلاحپور, سعید. (1396). پیشبینی روند قیمت سهام با استفاده از ماشین بردار پشتیبان تعدیلیافته همراه با انتخاب ویژگی هیبرید. چشم انداز مدیریت مالی, 7(17), 69-86.
MLA
سعید باجلان; سعید فلاحپور. "پیشبینی روند قیمت سهام با استفاده از ماشین بردار پشتیبان تعدیلیافته همراه با انتخاب ویژگی هیبرید", چشم انداز مدیریت مالی, 7, 17, 1396, 69-86.
HARVARD
باجلان, سعید, فلاحپور, سعید. (1396). 'پیشبینی روند قیمت سهام با استفاده از ماشین بردار پشتیبان تعدیلیافته همراه با انتخاب ویژگی هیبرید', چشم انداز مدیریت مالی, 7(17), pp. 69-86.
VANCOUVER
باجلان, سعید, فلاحپور, سعید. پیشبینی روند قیمت سهام با استفاده از ماشین بردار پشتیبان تعدیلیافته همراه با انتخاب ویژگی هیبرید. چشم انداز مدیریت مالی, 1396; 7(17): 69-86.