پیش‌بینی روند قیمت سهام با استفاده از ماشین بردار پشتیبان تعدیل‌یافته همراه با انتخاب ویژگی هیبرید

نوع مقاله : علمی - پژوهشی

نویسندگان

1 استادیارگروه مالی و بیمه، دانشکده مدیریت دانشگاه تهران

2 ** استادیارگروه مالی و بیمه، دانشکده مدیریت دانشگاه تهران.

چکیده

     در پژوهش حاضر، مدلی برای پیش­بینی روند قیمت سهام برپایه­ی ماشین بردار پشتیبان وزن‌دهی‌شده توسط حجم­های روزانه معاملات، همراه با روش انتخاب ویژگی هیبرید F-SSFS ارائه می­شود. به منظور ارزیابی دقت پیش­بینی، مدل پیشنهادی با مدل ماشین بردار پشتیبان ساده همراه با انتخاب ویژگی هیبرد و نیز با روش­های انتخاب ویژگی مرسوم از جمله بهره اطلاعات[1]، عدم قطعیت متقارن[2] و انتخاب ویژگی بر پایه همبستگی[3]، از طریق انجام آزمون تی زوجی، مقایسه می­شود؛ همچنین به­عنوان مجموعه ویژگی­های اولیه که در واقع ورودی ماشین بردار پشتیبان تعدیل­یافته هستند، از شاخص­های تحلیل تکنیکال و شاخص­های آماری که برای 10 سهم محاسبه شده­اند، استفاده می­شود. نتیجه این پژوهش نشان می­دهد که عملکرد ماشین­بردار پشتیبان وزن­دهی­شده، در مورد مسئله پیش‌بینی روند قیمت سهام، به میزان قابل­توجهی بهتر از ماشین بردار پشتیبان ساده است. علاوه براین، نتایج عملیاتی نشان­می­دهد که ماشین بردار پشتیبان وزن­دهی­شده همراه با انتخاب ویژگی هیبرید پیشنهادی، بالاترین میزان دقت پیش­بینی را نسبت به سه روش انتخاب ویژگی دیگر دارد. براساس نتایج این پژوهش می­توان ادعا کرد مدل VW-SVM همراه با انتخاب ویژگی F-SSFS عملکرد بهتری در پیش­بینی قیمت سهم، نسبت به روش­های موجود دارد.2. Information Gain3. Symmetrical uncertainty4. Correlation based feature selection

کلیدواژه‌ها


  1. Abu-Mostafa, Y. S., & Atiya, A. F. (1996). Introduction to financial forecasting.
  2. Applied Intelligence, 6(3), 205–213.
  3. Badri, Dawaloo & Dori Nokarani (1395). Studying macroeconomic factors on stock market performance, Journal of financial management perspective. 13: (9-35).
  4. Chavarnakul, Thira, and David Enke (2008). Intelligent technical analysis based equivolume charting for stock trading using neural networks. Expert Systems with Applications 34.2: 1004-1017.
  5. Chen, Y.-W., & Lin, C.-J., (2005). Combining SVMs with various feature selection strategies. Available from: .
  6. Choudry, R. & Grag, K. (2008). A Hybrid Machine Learning System for Stock Market Forecasting. World Academy of Science, Engineering and Technology, 39.
  7. Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20, 273–297.
  8. Cristianini, N., & Shawe-Taylor, J. (2000). An introduction to support vector machines.Cambridge: Cambridge University Press.
  9. Dash, M. et al., (2002). Feature selection for clustering – a filter solution. In Proceedings of the second international conference on data mining :115–122.
  10. Ebadi, Forcasting Stock index price in Tehran stock exchange using artificial network, Thesis for master degree, Bu Ali Sina University, Faculty of economy and social science.
  11. Eslami Bidgoli (1393). Shabanpoorfard, Relevency of trading volume and return case study in Tehran stock exchange considering intraday volume and excluding the U effect, Journal of Financial Management Perspective, 6: 45-63.
  12. Fallahpour, Golarzi, Fatoorechian, Stock Price Movement Prediction Using
  13. Support Vector Machine Based on Genetic Algorithm in Tehran Stock Exchange Market. Journal of financial research. 15(2), 269-288.
  14. Huang, C.-L., Chen, M.-C., & Wang, C.-J. (2007). Credit scoring with a data mining approach based on support vector machines. Expert Systems with Applications, 33(4), 847–856.
  15. Huang, C.-J., Dian-Xiu & Chuang, Y.-T. (2007). Application of wrapper approach and composite classifier to the stock trend prediction. Expert Systems with Applications, 34(4), 2870–2878.
  16. Hashemi, Analysis of behavioral factors effect on forcasting stock price using regression feedforward artificial neural network, Thesis for master degree, University of Science and Culture.
  17. Kohavi, Ron, and George H. John (1997). Wrappers for feature subset selection. Artificial intelligence 97.1: 273-324.
  18. Lawrence, S., Giles, C. L., & Tsoi, A.-C. (1997). Lessons in neural network training: Over fitting may be harder than expected. In Proceedings of the fourteenth national conference on artificial intelligence, AAAl-97: 540–545.
  19. Lee, Ming-Chi (2009). Using support vector machine with a hybrid feature selection method to the stock trend prediction. Expert Systems with Applications 36.8: 10896-10904.
  20. Leung, M. T., Daouk, H., & Chen, A. S. (2000). Forecasting stock indices: A comparison of classification and level estimation models. International Journal of Forecasting, 16, 173–190.
  21. Min, J. H., & Lee, Y.-C. (2005). Bankruptcy prediction using support vector machine with optimal choice of kernel function parameters. Expert Systems with Applications, 28(4), 603–614.
  22. Monajemi, Ebrazi, Rayati, (1388). Stock price prediction in Tehran stock exchange using artificial neural network. Journal of financial economy, 6(3), 1-26.
  23. Tan, T. Z., Quek, C., & See, Ng. G. (2007). Biological brain-inspired genetic complementary learning for stock market and bank failure prediction. Computational Intelligence, 23(2), 236–261.
  24. Theodoridis, S., & Koutroumbas, K. (2008). Pattern Recognition. Academic Press.
  25. Yu, L., & Liu, H., (2003). Feature selection for high-dimensional data: A fast correlation-based filter solution. In Proceedings of the 20th international conference on machine learning: 856–863.
  26. Żbikowski, Kamil. (2014). Using volume weighted support vector machines with walk forward testing and feature selection for the purpose of creating stock trading strategy. Expert Systems with Applications. 10.001.
  27. Zhang, Xiangzhou, et al (2014). A causal feature selection algorithm for stock prediction modeling. Neurocomputing, 142: 48-59.