ارزش‌گذاری اوراق اختیار معامله با نرخ سود تصادفی در بورس اوراق بهادار تهران

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار، گروه مالی و بانکداری، دانشگاه علامه طباطبائی، تهران، ایران

2 دانشجوی کارشناسی ارشد مهندسی مالی و مدیریت ریسک، دانشگاه علامه طباطبائی، تهران، ایران

چکیده

هدف این مقاله قیمت‌گذاری اختیار معاملات مبتنی بر مدل‌های نرخ سود تصادفی و مقایسه عملکرد هر یک از آن‌ها با مدل قیمت‌گذاری اختیار معامله تحت نرخ سود غیرتصادفی (مدل بلک، شولز و مرتون) در بورس اوراق بهادار تهران است. در این پژوهش از داده‌های اختیار معامله که از ابتدای سال 1397 تا انتهای آذرماه 1401 در بورس اوراق بهادار تهران معامله شده‌اند استفاده شده است. در این مطالعه قیمت نظری به‌دست‌آمده از هر مدل با قیمت‌های معامله‌شده در بورس اوراق بهادار تهران مقایسه گردیدند. براساس معیار RMSE و همچنین نتایج رگرسیون‌های برازش‌شده، مشخص شد که در ارزش‌گذاری اختیار معامله‌های کوتاه‌مدت، تفاوت چندانی میان مدل‌های ارزش‌گذاری اختیار معامله تحت نرخ سود تصادفی و مدل بلک، شولز و مرتون وجود ندارد. در حالی‌که ارزش‌گذاری اختیار معامله‌های بلندمدت با استفاده از مدل‌های ارزش‌گذاری اختیار معامله تحت سود تصادفی عملکرد بهتری نسبت به مدل بلک، شولز و مرتون داشته‌اند. در این میان، استفاده از مدل واسیچک در قیمت‌گذاری اختیار معامله، مناسب‌ترین و دقیق‌ترین روش قیمت گذاری اختیار معامله نسبت به مدل‌های دیگر است. پس از آن، به ترتیب مدل مرتون و مدل CIR بیشترین دقت را داشته‌اند.

کلیدواژه‌ها


عنوان مقاله [English]

Option Pricing Using Stochastic Interest Rate in Tehran Stock Exchange

نویسندگان [English]

  • Moslem Peymany 1
  • Meysam Amiri 1
  • Seyed Mohammad Sokout 2
1 Assistant Prof, Department of Finance and Banking, Allameh Tabataba'i University, Tehran, Iran
2 M.Sc. student in Financial Engineering and Risk Management, Allameh Tabataba'i University, Tehran, Iran
چکیده [English]

The purpose of this paper is to investigate option pricing using stochastic interest rates and compare the performance of each of them with options pricing using non-stochastic interest rates (Black, Scholes and Merton model) in Tehran Stock Exchange. In this study, our data are option data traded in Tehran Stock Exchange from March 2018 to December 2022. During the research, the theoretical prices achieved from each model compared with the prices traded in the Tehran Stock Exchange. Based on the Root Mean Squared Error (RMSE) criterion and regression results, It was found that in the valuation of short-term options, there is not much difference between the option pricing using stochastic interest rate models and Black, Scholes and Merton model. While the pricing of long-term options have performed better than the Black, Scholes, and Merton models under stochastic interest rate. Also, using Vasicek interest rate model in option pricing is the most accurate option pricing result compared to other models. After that, Merton model and CIR model have been most accurate

کلیدواژه‌ها [English]

  • Options
  • Stochastic Interest Rates
  • Merton model
  • Vasicek model
  • CIR model
  1. Abudy, M., & Izhakian, Y. (2013). Pricing stock options with stochastic interest rate. International Journal of Portfolio Analysis and Management1(3), 250-277.
  2. Abvali, M., Khaliliaraghi, M., Hasanabadi, H., & Yaghoobnezhad, A. (2019). Optional trading pricing with a new analytic method for the Black Scholes equation. Financial Management Strategy7(3), 135-155. (in Persian)
  3. Amin, K. I., & Jarrow, R. A. (1992). Pricing options on risky assets in a stochastic interest rate economy 1. Mathematical Finance2(4), 217-237.
  4. Antonelli, F., Ramponi, A., & Scarlatti, S. (2021). A moment matching method for option pricing under stochastic interest rates. Applied Stochastic Models in Business and Industry37(4), 802-822.
  5. Azar, A., & Karimi, S. (2010). Neural Network Forecasts of Stock Return Using Accounting Ratios. Financial Research Journal11(28). (in Persian)
  6. Bailey, W., & Stulz, R. M. (1989). The pricing of stock index options in a general equilibrium model. Journal of Financial and Quantitative Analysis24(1), 1-12.
  7. Bakshi, G., Cao, C., & Chen, Z. (1997). Empirical performance of alternative option pricing models. The Journal of finance52(5), 2003-2049.
  8. Black, F., & Scholes, M. (1973). The pricing of options and corporate liabilities. Journal of political economy81(3), 637-654.
  9. Brooks, C. (2019). Introductory econometrics for finance. Cambridge university press.
  10. Cox, J. C., Ingersoll Jr, J. E., & Ross, S. A. (1985). A theory of the term structure of interest rates, Econometrica, 53, 385-407.
  11. Elahi, M. (2013). A Monte Carlo Approach for the American Put under Stochastic Interest Rates. Sheikhbahaee University, Iran. (in Persian)
  12. Fathi, S., & Seyyedian Hashemi, S. H. (2020). The Effect of Selective Macroeconomic Variables on the Options Market Efficiency; Meta-Analysis of the Violation of Options Arbitrage Restrictions. ـJournal of Financial Management Perspective10(30), 81-98. (in Persian)
  13. Ghasemi, F. (2015). The Role of Options Contract in Islamic Finance (With emphasis on the capital market in Iran). Payam Noor University, Iran. (in Persian)
  14. He, X. J., & Zhu, S. P. (2018). A closed-form pricing formula for European options under the Heston model with stochastic interest rate. Journal of computational and applied mathematics335, 323-333.
  15. Hull, J. C. (2021). Option, Futures, and Other Derivatives: Eleventh Edition . New York: Pearson.
  16. Kim, Y. J. (2002). Option pricing under stochastic interest rates: an empirical investigation. Asia-Pacific Financial Markets9, 23-44.
  17. Kim, Y. J., & Kunitomo, N. (1999). Pricing options under stochastic interest rates: a new approach. Asia-Pacific Financial Markets6, 49-70.
  18. Kwok, Y. K. (2008). Mathematical models of financial derivatives. Springer.
  19. Malekmohamadi, S. (2021). Performance Comparison of Option Pricing Models in Tehran Stock Exchange. Allameh Tabataba’i University, Iran. (in Persian)
  20. Merton, R. C. (1973). Theory of rational option pricing. The Bell Journal of economics and management science, 141-183.
  21. Munk, C. (2011). Fixed income modelling. Oxford University Press.
  22. Namavar, F. (2014). Research European option pricing under volatility interest rate in companies listed on the Stock Exchange. University of Science & Culture, Iran. (in Persian)
  23. Neisy, A., Maleki, B., & Rezaeian, R. (2016). The Parameters Estimation of European Option pricing model under Underlying Asset with Stochastic Volatility by Loss Function Method. Financial Engineering and Portfolio Management7(28), 91-115. (in Persian)
  24. Neisy, A., Safaei, M., & Nematollahi, N. (2018). A Numerical method for solving the problem of Pricing American Options under the CIR stochastic interest rate model. Financial Engineering and Portfolio Management9(35), 259-281. (in Persian)
  25. Peymany, M., & Hooshangi, Z. (2017). Estimation and Comparison of Short-Term Interest Rate Equilibrium Models Using Islamic Treasury Bills. Financial Engineering and Portfolio Management8(33), 89-111. (in Persian)
  26. Rabinovitch, R. (1989). Pricing stock and bond options when the default-free rate is stochastic. Journal of Financial and Quantitative Analysis24(4), 447-457.
  27. Rafiee, M., Hesarzadeh, R., & Nasirzadeh, F. (2020). The impact of Tedan system analytical reports on the informational efficiency of Tehran Stock Exchange. ـJournal of Financial Management Perspective10(32), 109-130. (in Persian)
  28. Rindell, K. (1995). Pricing of index options when interest rates are stochastic: an empirical test. Journal of Banking & Finance19(5), 785-802.
  29. Saadaei Jahromi, S. (2022). Option Pricing Using Machine Learning. Allameh Tabataba’i University, Iran. (in Persian)
  30. Vasicek, O. (1977). An equilibrium characterization of the term structure. Journal of financial economics5(2), 177-188.