آینده پژوهی پیشران‌های کلیدی موثر بر بی‌ثباتی بازار سرمایه ایران

نوع مقاله : علمی - پژوهشی

نویسندگان

1 دانشجوی دکتری، گروه حسابداری، واحد نجف آباد، دانشگاه آزاد اسلامی، نجف آباد، ایران

2 ** استادیار، گروه حسابداری، واحد نجف آباد، دانشگاه آزاد اسلامی، نجف آباد، ایران

3 استادیار، گروه حسابداری، واحد نجف آباد، دانشگاه آزاد اسلامی، نجف آباد، ایران .

4 دانشیار، گروه حسابداری، واحد بندرگز، دانشگاه آزاد اسلامی، بندرگز، ایران

چکیده

کارایی بازار سرمایه به عنوان یکی از پایه‌های ثبات و پایداری در هر نظام اقتصادی تلقی می‌شود که می‌تواند به جلب اعتماد بالاتر سرمایه‌گذاران منجر شود. اما وجود اختلال‌های مربوط به متغیرهای کلان اقتصادی؛ حکمرانی بازار سرمایه و جریان‌های سیاسی حاکم بر بازار باعث ایجاد بی‌ثباتی بازار سرمایه می‌شود که می‌تواند تبعات رفتاری و کلان اقتصادی برای هر کشوری به همراه داشته باشد. هدف این مطالعه، امکان سنجی آینده پژوهی بازار سرمایه از منظر ارزیابی پیشران‌های بی‌ثباتی تحت وجود محرک‌های رفتار هیجانی سرمایه‌گذاران می‌باشد. روش‌شناسی این مطالعه به لحاظ جمع‌آوری داده‌ها ترکیبی است و از مجموعه فرآیندهای تحلیل تماتیک در بخش کیفی و تحلیل‌های مرتبط با سناریوپردازی در بخش کمی تشکیل شده است. مشارکت‌کنندگان در بخش کیفی 20 نفر از خبرگان دانشگاهی بودند در حالیکه در بخش کمی25 نفر از کارگزاران بازار سرمایه، که از تجربه و دانش لازم در خصوص محرک‌های رفتاری سرمایه‌گذاران برخوردار بودند، مشارکت داشتند. نتایج در بخش کیفی طی 20 مصاحبه از وجود 5 مضمون سازمان‌دهنده و 40 مضمون پایه حکایت داشت که تمامی مضامین مورد استفاده در بخش سناریوپردازی نیز از تأیید تحلیل دلفی برخوردار بودند. در بخش کمی نیز مشخص گردید، مهم‌ترین سناریو مرتبط با پیشران‌های بی‌ثباتی بازار سرمایه، سناریوی سنوسی یا عبارت توضیحی (تشبیه مضمون ادبی) اسب سرکش می‌باشد که به عنوان مهم‌ترین عامل بی‌ثباتی بازار سرمایه، تحت تأثیر محرک‌ توده واری رفتار هیجانی سرمایه‌گذاران بیشتر تشدید می‌شود. نتایج به‌دست آمده گویایی این واقعیت هستند که یکی از مهم‌ترین دلایل بی‌ثباتی بازار سرمایه، رفتار توده‌وار سرمایه‌گذاران و سهامداران می‌باشد و دلیل آن وجود نوسانات ارزی است که باعث می‌شود تا جذابیت‌های سرمایه‌گذاری در بازارهای مالی مثل بورس اوراق بهادار، جای خود را به سرمایه‌گذاری در بازارهای پولی و ارزی دهد تا با نوسان‌گریزی تفاوت ریال با ارزهای بین‌المللی، بازده بیشتری را در افق کوتاه‌مدت‌تر برای سرمایه‌گذاران به همراه داشته باشد. 

کلیدواژه‌ها


عنوان مقاله [English]

Future research of the key drivers affecting the instability of Iran's capital market

نویسندگان [English]

  • Yalda Charmi Oskouy 1
  • Khadijeh Ebrahimi kahrizsangi 2
  • Arezoo Aghaie Chadgany 3
  • Mehdi Safari Gerayli 4
1 PH.D Candidate, Department of Accounting, Najafabad Branch, Islamic Azad University, Najafabad, Iran.
2 Assistant Prof., Department of Accounting, Najafabad Branch, Islamic Azad University, Najafabad, Iran
3 Assistant Prof., Department of Accounting, Najafabad Branch, Islamic Azad University, Najafabad, Iran.
4 Associate Prof., Department of Accounting, Bandargaz Branch, Islamic Azad University, Bandargaz, Iran.
چکیده [English]

Capital market efficiency is considered as one of the foundations of stability and stability in any economic system, which can lead to higher investor confidence. But the existence of disturbances related to macroeconomic variables; The governance of the capital market and the political currents governing the market cause the instability of the capital market, which can have behavioral and macroeconomic consequences for any country. The purpose of this research is the feasibility of capital market future research is from the perspective of evaluating the drivers of instability under the presence of the emotional behavior of investors. The methodology of this study is mixed in terms of data collection and consists of a set of thematic analysis processes in the qualitative part and analyzes related to scenario development in the quantitative part. The participants in the qualitative part were 20 academic experts, while in the quantitative part 25 capital market brokers, who had the necessary experience and knowledge about the behavioral drivers of investors, participated. The results in the qualitative section during 20 interviews indicated the existence of 5 organizing themes and 40 basic themes, and all the themes used in the scenario development section were also confirmed by Delphi analysis. In the quantitative section, it was also determined that the most important scenario related to the drivers of capital market instability is the Senusi scenario or the explanatory phrase (simulation of the literary theme) of the rebellious horse which as the most important factor in the instability of the capital market, the emotional behavior of investors is further intensified under the influence of mass stimulus. The obtained results indicate the fact that one of the most important reasons for the instability of the capital market is the mass behavior of investors and shareholders, and the reason for this is the existence of currency fluctuations, which causes the attractiveness of investing in financial markets such as the stock exchange to be replaced by investing in monetary and foreign exchange markets to bring more returns in the shorter term for investors by avoiding fluctuations in the difference between Rial and international currencies.

کلیدواژه‌ها [English]

  • Evaluation of Drivers
  • Capital Market Instability
  • Investors’ Emotional Behavior Stimulation
  1. Abdel Khalek, G. and Rizk, A. (2023). Cost of foreign reserve accumulation in emerging market and developing economies, Review of Economics and Political Science, https://doi.org/10.1108/REPS-12-2022-0108
  2. Akhtar, M. and Malik, M.U. (2023). Personality traits and investor risk behavior: moderating role of financial literacy, Managerial Finance, 49(5): 884-905. https://doi.org/10.1108/MF-08-2021-0387
  3. Al-Alawi, A. (2017). Holistic approach to the factors affecting individual investor's decision making in the GCC market. Submitted Doctoral Thesis, Plymouth University.
  4. Attride-Stirling, J. (2001). Thematic Networks: An Analytic Tool for Qualitative Research, Qualitative Research, 1(3): 385–405. https://doi.org/10.1177/146879410100100307
  5. Bihari, A., Dash, M., Muduli, K., Kumar, A., Mulat-Weldemeskel, E. and Luthra, S. (2023). Does cognitive biased knowledge influence investor decisions? An empirical investigation using machine learning and artificial neural network, VINE Journal of Information and Knowledge Management Systems, https://doi.org/10.1108/VJIKMS-08-2022-0253
  6. Dadras Keyvan, TolOiee Ash Aghi Abbas, RadfAr Reza. Role of Behavioral Finance In Understanding Individual Investor's Behavior (A Review of Empirical Evidences from Tehran Stock Exchange). Investment Know Ledge [Internet]. 2019;7(28 ):83-101. (In Persian)
  7. Dai, Zh., Zhou, Zh. (2022). Research and Forecast Analysis of Financial Stability for Policy Uncertainty, Computational Intelligence in Internet of Things Enabled Applications, 21(1): 1-32. https://doi.org/10.1155/2022/8799247
  8. Dasgupta, R. and Chattopadhyay, S. (2020). Stock market drivers of retail investors’ sentiment – facets and new evidences from India, Rajagiri Management Journal, 14(2): 133-154. https://doi.org/10.1108/RAMJ-05-2020-0015
  9. Dasgupta, R. and Singh, R. (2018). Investor sentiment antecedents: A structural equation modeling approach in an emerging market context, Review of Behavioral Finance, 11(2): 222-245. https://doi.org/10.1108/RBF-07-2017-0068
  10. Dias, I, K., Fernando, R., Fernando, N, D. (2022). Does investor sentiment predict bitcoin return and volatility? A quantile regression approach, International Review of Financial Analysis, 84(2): 222-245.
  11. Diebold, F. X., & Yilmaz, K. (2012). Better to Give than to Receive: Predictive Directional Measurement of Volatility Spillovers. International Journal of Forecasting, 28, 58-66.
  12. Dieci, R., Weterhoff, F. (2013). On the inherent instability of international financial markets: natural nonlinear interactions between stock and foreign exchange markets, Applied Mathematics and Computation, 221(15): 306-328. https://doi.org/10.1016/j.amc.2013.06.042
  13. Duxbury, D., Wang, W. (2022). Investor sentiment and the risk–return relation: A two-in-one approach, Europen Financial Management, https://doi.org/10.1111/eufm.12427
  14. Ehouman, Y. A. (2020). Volatility transmission between oil prices and banks’ stock prices as a new source of instability: Lessons from the United States experience. Economic Modelling, 91, 198-217.
  15. Francisco Arroyo, M., Antonio, F., Garima, V. (2023). Publication: Fiscal Policy Volatility and Growth in Emerging Markets and Developing Economies, Policy Research Working Papers, https://openknowledge.worldbank.org/handle/10986/39711
  16. French, J. (2017). Asset pricing with investor sentiment: On the use of investor group behavior to forecast ASEAN markets, Research in International Business and Finance, 42(1): 124-148. https://doi.org/10.1016/j.ribaf.2017.04.037
  17. Gaies, B., Sahbi Nakhli, M., Ayadi, R., Sahut, J, M. (2023). Exploring the causal links between investor sentiment and financial instability: A dynamic macro-financial analysis, Journal of Economic Behavior & Organization, 204(3): 290-303. https://doi.org/10.1016/j.jebo.2022.10.013
  18. Gao, Zh., Zhang, J. (2023). The fluctuation correlation between investor sentiment and stock index using VMD-LSTM: Evidence from China stock market, The North American Journal of Economics and Finance, 66(1): 313-343. https://doi.org/10.1016/j.najef.2023.101915
  19. Guizani, M., Talbi, D. and Abdalkrim, G. (2023). Economic policy uncertainty, geopolitical risk and cash holdings: evidence from Saudi Arabia, Arab Gulf Journal of Scientific Research, 41(2): 183-201. https://doi.org/10.1108/AGJSR-07-2022-0109
  20. Hassanpour Hamid, BARZANI Mohammad Vaez, Moarefi Mohammadi Abdolhamid, Emami Jomeh Seyed Mehdi. A Comparative Analysis of the Epistemological Foundations of Classical and Behavioral Finance. Marifate eghtesadi eislami[Internet]. 2020;11(2 (22) ):57-74. (In Persian)
  21. Hadipour Hassan, Paytakhti Oskooe Seyed Ali, Rahmani Kamaleddin. Factors Affecting the Instability Index in Tehran Stock Exchange. The journal of Planning And budgeting[Internet]. 2021;26(3 ):131-154 .Available from: https://sid.ir/paper/1034587/en. (In Persian)
  22. Hossein Jokar, Mahdi Bahar moghaddam , (2018). The Mechanism  of  Analyzing Investors? Sentiments and Accounting Information on stock market Prices, Appleid Research in Financial Reporting, 7(12), 171-202. magiran.com/p1882506. (In Persian).
  23. Hudson, Y., Yan, M., Zhang, D. (2020). Herd behaviour & investor sentiment: Evidence from UK mutual funds, International Review of Financial Analysis, 71(1): 114-137. https://doi.org/10.1016/j.irfa.2020.101494
  24. JalalI, Rostam. (2012). Qualtative research sampling. Journal of qualitative research in health sciences, 1(4), 310-320. SID. (In Persian)
  25. Jamshidi naser, Ghalibaf asl hassan .(2018). Studying the Effect of Investors’ Personality on their Business Behavior and Investment Performance: Evidences of Tehran Stock Exchange. Financial research [Internet]. 2018;20(1 ):75-90. (In Persian)
  26. Jonsen, K. and Jehn, K.A. (2009). Using triangulation to validate themes in qualitative studies, Qualitative Research in Organizations and Management, 4(2): 123-150. https://doi.org/10.1108/17465640910978391
  27. Kanzari, D., Nakhli, M, S., Gaies, B., Sahut, J, M. (2023). Predicting macro-financial instability: How relevant is sentiment? Evidence from long short-term memory networks, Research in International Business and Finance, 65(3): 103-141. https://doi.org/10.1016/j.ribaf.2023.101912
  28. Kardan bhezad, VadeeI Mohammad hossein, Zol faghar Arani Mohammad Hossein . The role of behavioral tendencies (sentiment) of investors in valuation of the company. Journal of accounting knowledge[Internet]. 2018;8(4 (31) ):7-35. (In Persian)    Available from: https://sid.ir/paper/163412/en
  29. Kim, K., Ryu, D. (2021). Term structure of sentiment effect on investor trading behavior, Finance Research Letters, 43(2): 54-87. https://doi.org/10.1016/j.frl.2021.102005
  30. Keshavarz Hadi. Political, Financial and Economic Instability in the Iran Economy: Dimensions and Factors.international political economy studies[Internet]. 2021;4(2 ):691-724. (In Persian)
  31. Khatiri, M., Taghavi, S. A., Asgari, A., & Rostami, F. (2021). Factors Affecting the Prediction of Irregularity Stock Price Bubble. Financial Management Perspective, 11(36), 173-187. doi: 10.52547/JFMP.11.36.173. (In Persian)
  32. Lee, H, J., Sung, T., Won Seo, S. (2022). Investor sentiment, credit rating, and stock returns, International Review of Economics & Finance, 80(1/2): 1076-1092. https://doi.org/10.1016/j.iref.2022.04.002
  33. Liu, J., Wu, K., Zhou, M. (2023). News tone, investor sentiment, and liquidity premium, International Review of Economics & Finance, 84(3): 167-181. https://doi.org/10.1016/j.iref.2022.11.016
  34. Ma, Y., Lv, L. (2022). Financial development, financial instability, and fiscal policy volatility: International evidence, The North American Journal of Economics and Finance, 64(3): 38-55. https://doi.org/10.1016/j.najef.2022.101873
  35. Majidi Zavieh, R., & Hajizadeh, E. (2021). Investigating the impact of sentiments on stock returns: evidence from reactions to social media content. Financial Management Perspective, 11(36), 57-89. doi: 10.52547/jfmp.11.36.57. (In Persian)
  36. Marzban, E., Firoozpour, A. and Marzban, M. (2022). Electricity as a common good/resource: a scenario based approach, International Journal of Energy Sector Management, https://doi.org/10.1108/IJESM-08-2021-0020
  37. Mehta, N.K., Bhattacharyya, S.S. and Pandey, N. (2022). Empirical investigation regarding ethical decision making: a stakeholder cross-impact analysis (SCIA), International Journal of Ethics and Systems, 38(3): 444-464. https://doi.org/10.1108/IJOES-07-2021-0149
  38. Mehta, N.K., Bhattacharyya, S.S. and Pandey, N. (2022). Empirical investigation regarding ethical decision making: a stakeholder cross-impact analysis (SCIA), International Journal of Ethics and Systems, 38(3): 444-464. https://doi.org/10.1108/IJOES-07-2021-0149
  39. Mirhasheminasab, S. A., Mohamadzadeh, A., Mohammadnoorbakhsh Langaroodi, M., & Akhoondi, N. (2019). A Model for Syntactic Investigation between Risk taking, Personal and Cultural properties on Herding Behavior in Tehran Stock Exchange.. Financial Management Perspective, 9(28), 65-90. doi: 10.52547/jfmp.9.28.65. (In Persian)
  40. Mohamadi, M., Azimi Yancheshme, M., Fouladi, M., & Farhadi, M. (2022). Designing a model to explain the impact of investors' emotions on financial decisions, stock returns and economic volatility. Financial Management Perspective. 12(40), 145-171. doi: 10.52547/jfmp.12.40.145. (In Persian)
  41. Molina-Muñoz, J., Mora–Valencia, A., Perote, J. and Rodríguez-Raga, S. (2023). Volatility transmission dynamics between energy and financial indices of emerging markets: a comparison between the subprime crisis and the covid-19 pandemic, International Journal of Emerging Markets, https://doi.org/10.1108/IJOEM-10-2021-1551
  42. Naughton, J, P., Wang, C., Yeung, I. (2019). Investor Sentiment for Corporate Social Performance. The Accounting Review, 94(4): 401–420. https://doi.org/10.2308/accr-52303
  43. Nayebmohseni Sheida, Khalifehsultani Seyed Ahmad, Hejazi rezvan . Developing a Behavioral Model of Individual Investors’ Decisionmaking in the Iranian Capital Market. Financial research[Internet]. 2022;23(4 ):625-652. Available from: https://sid.ir/paper/958402/en. (In Persian)
  44. P H, H., Rishad, A. (2021). An empirical examination of investor sentiment and stock market volatility: evidence from India. Financial Innovation, 6, 34. https://doi.org/10.1186/s40854-020-00198-x
  45. Palermo, T. (2018). Accounts of the future: A multiple-case study of scenarios in planning and management control processes, Qualitative Research in Accounting & Management, 15(1): 2-23. https://doi.org/10.1108/QRAM-06-2016-0049
  46. Pillada, N., Rangasamy, S. (2023). An empirical investigation of investor sentiment and volatility of realty sector market in India: an application of the DCC–GARCH model, SN Business & Economics, 3(1): 55-72. https://doi.org/10.1007/s43546-023-00434-3
  47. Raheja, S. and Dhiman, B. (2020). How do emotional intelligence and behavioral biases of investors determine their investment decisions?, Rajagiri Management Journal, 14(1): 35-47. https://doi.org/10.1108/RAMJ-12-2019-0027
  48. Ranjbar, Hadi, Haghdoost, Ali Akbar, Salsali, Mahvash, Khoshdel, Alireza, Soleimani, Mohammadali, & Bahrami, Nasiim. (2012). Sampling in Qualitative Research: A guide for beginning. Annals of military and heal the sciences research, 10(3 (serial number 39)), 238-250. sid.https://sid.ir/paper/96654/en. (In Persian)
  49. reza khedri gharibvand, Hosein Ali Sinayi, (2023). The impact of investors' emotions on economic variables using the index of investors' emotional behavior in Tehran Stock Exchange, Scientific Journal Budget and Finance Strategic Research, 4(1), 11-35. magiran.com/p2550250. (In Persian)
  50. Shahzad, U., Si Mohammed, K., Tiwari, S., Nakonieczny, J., Nesterowicz, R. (2023). Connectedness between geopolitical risk, financial instability indices and precious metals markets: Novel findings from Russia Ukraine conflict perspective, Resources Policy, 80(2): 104-117. https://doi.org/10.1016/j.resourpol.2022.103190
  51. Tao, Z., Moncada, J, A., Delarue, E. (2023). Exploring the impact of boundedly rational power plant investment decision-making by applying prospect theory, Utilities Policy, 34(3): 43-67. https://doi.org/10.1016/j.jup.2023.101522
  52. Teovanović, P., Knežević, G., Stankov, L. (2015). Individual differences in cognitive biases: Evidence against one-factor theory of rationality, Intelligence, 50(3): 75-86. https://doi.org/10.1016/j.intell.2015.02.008
  53. Ul Din, S, M., Mehmood, Sh, Kh., Shahzad, A., Ahmad, I., Davidyants, A., Abu-Rumman, A. (2020). The Impact of Behavioral Biases on Herding Behavior of Investors in Islamic Financial Products, Organizational Psychology, 10(8): 87-110. https://doi.org/10.3389/fpsyg.2020.600570