تحلیل نوسانات بورس اوراق بهادار تهران با استفاده از مدل MSBVAR-DCC

نوع مقاله : علمی - پژوهشی

نویسندگان

1 پژوهشکده مطالعات اقتصادی دانشگاه الزهرا

2 دانشگاه الزهرا

3 دانشگاه علامه طباطبایی

چکیده

هدف این پژوهش، تحلیل علّیت گرنجر در واریانس شرطی و کاربرد آن در بورس اوراق بهادار است. به‌این‌منظور، سری‌های زمانی شاخص آزاد شناور بورس اوراق بهادار، نرخ ارز (ریال برحسب دلار)، قیمت نفت سبد اوپک (بشکه برحسب دلار) و قیمت جهانی طلا (اونس برحسب دلار) درنظر گرفته‌شده است تا تعامل نوسانات بورس با نوسانات بازار داخلی (ارز) و بازارهای بین‌المللی (نفت و طلا) موردبررسی قرار گیرد. تواتر داده ها روزانه است. دوره موردمطالعه هم‌زمان با شروع کار دولت یازدهم بوده و با تحولات مهم داخلی و خارجی ازجمله تلاش برای تحقق اقتصاد مقاومتی، افت شدید قیمت نفت، بحران خاورمیانه و توافق برجام همراه است. تحلیل علّیت در قالب الگوی MSBVAR-DCC با رهیافت بیزی انجام‌شده است. نسبت بخت‌ها دلالت بر آن دارد که رابطه علّی در واریانس شرطی از سوی متغیرهای الگو به‌سوی متغیر مالی وجود دارد. براین‌اساس، نوسانات متغیرهای نفت، ارز و طلا حاوی اطلاعات منحصربه‌فردی برای نوسانات متغیر مالی هستند. ازاین‌رو، تکانه‌ها و گذشته نوسانات شاخص بورس به‌تنهایی برای تبیین نوسانات این متغیر کافی نبوده و استفاده از اطلاعات نوسانات بازارهای داخلی و خارجی  توصیه می‌شود.

کلیدواژه‌ها


عنوان مقاله [English]

Analyzing volatility of Tehran stock exchange using MSBVAR-DCC model

نویسندگان [English]

  • Maryam Moghaddas Bayat 1
  • Shamsollah Shirinbakhsh 2
  • Teymour Mohammadi 3
1 Institute of Economic Research Alzahra
2 Alzahra
3 Allameh
چکیده [English]

The goal of this research is to represent a Granger causal analyzing and its application in stock exchange. In order to do that, free float index of stock exchange, exchange rate(Rial in terms of Dollar), OPEC basket price(barrel per Dollar), gold price(Ounce in terms of Dollar) time series are selected to study Iran financial market interaction with domestic market(exchange rate) and international markets(oil and gold). Daily data cover the period that taking office by new presidency occured, also important domestic and international events such as efforts for realization of resistive economy, downfall oil price, middle east tension and Joint Comprehensive Plan of Action. Causal analyzing implements by using MSBVAR-DCC model and Bayesian approach. According to odds ratio, the variables are non-causal in conditional ratio, there is causal relation in conditional variance from the variables to financial variable. Therefore, oil, exchange rate and gold volatility includes exclusive information for stock index volatility. Consequently, shocks and past volatility of stock index lonely are not sufficient for volatility specification of the variable and using domestic market and international markets volatility information is strongly suggested.

کلیدواژه‌ها [English]

  • Granger causality in variance
  • MSBVAR-DCC
  • Bayesian Approach
  • odds ratio
  • Stock Exchange
  1. Baghjari, M., Nilchi, M., & Rasoolian, A. (2016). Examining the return and the return volatility of investment industryin month of Ramadan and Muharram. Financial Management Perspective, 6(15), 25-41 (inPersian).
  2. Bala, D. A., & Takimoto, T. (2017). Stock markets volatility spillovers during financial crises: A DCC-MGARCH with skewed-t density approach. Borsa Istanbul Review, 17(1), 25-48.
  3. Boudjellaba, H., Dufour, J. M., & Roy, R. (1994). Simplified conditions for noncausality between vectors in multivariate ARMA models. Journal of Econometrics, 63 (1), 271-287.
  4. Chkili, W., Aloui, Ch., Omar, M., & John, F. (2011). Stock market volatilityا and exchange rates in emergingcountries: A Markov-state switching approach. Emerging Markets Review, 12 (3), 272-292
  5. Engle, R. F., Granger, C. W. J., & Robins, R. P. (1986). Wholesale and Retail Prices: Bivariate Time Series Modelling with Forecastable Error Variance”, In D.Belsey and E.kuh (Eds.), Model Reliability, MIT Press, 1-17.
  6. Li, Y., & Giles, D. E. (2015). Modelling Volatility Spillover Effects between Developed Stock Markets and Asian Emerging Stock Markets. International Journal of Finance & Economics, 20(2), 155-177.
  7. Nazlioglu, S., Soytas, U., & Gupta, R. (2015). Oil prices and financial stress: A volatility spillover analysis Energy Policy, 82, 278-288.
  8. MacDonald, R., Sogiakas, V., & Tsopanakis, A. (2018). Volatility co-movements and spillover effects within the Eurozone economies: A multivariate GARCH approach using the financial stress index. Journal of International Financial Markets, Institutions and Money, 2018, vol. 52, issue C, 17-36.
  9. Tehrani & khosroshahi (2017). Volatility transmission and spillover among equity, exchange and gold markets. Financial Management Perspective, 7(18), 9-31 (in Persian).
  10. Rostami, M., Moghaddas bayat, M., & Maghami, R. (2017). Analyzing idiosyncratic risk and returns relationship based on quantile regression and Bayesian approach. Financial Management Perspective, 6(16), 135-151 (in Persian).
  11. Salisu, A., & Oloko, T. (2015). Modelling Oil price-US stocks nexus: A varma- bekk- grach Approach. Energy Economics.50, 1-12
  12. Zahedi Tehrani, P., & Sadeghi Sharif, J. (2012). Explaining and analysis the causal relationship between macroeconomic variables and the price index of Tehran stock exchange. Financial Management Perspective, 2(5), 65-89 (in Persian).