شناسایی عوامل ریسک و وابستگی های علی آن در استارتاپ‌ها: یک مطالعۀ دلفی - دیمتل در بستر سرمایه‌گذاری خطرپذیر ایران

نوع مقاله : علمی - پژوهشی

نویسندگان

1 گروه مدیریت، دانشکده علوم اداری و اقتصاد، دانشگاه اصفهان، اصفهان، ایران.

2 دانشیار دانشگاه اصفهان

3 پژوهشکده فناوری نانو و مواد پیشرفته، تهران، ایران.

چکیده

هدف: سرمایه‌گذاری خطر پذیر یکی از مفاهیم جدیدی است که در سال‌های اخیر مورد توجه بسیاری از فعالان سرمایه‌گذاری قرار گرفته است. یکی از چالش‌های مهم در سرمایه‌گذاری خطر پذیر، تحلیل ریسک‌های استارتاپ‌ها است. مرور ادبیات نشان می‌دهد تحلیل و ارزیابی شرکت‌های نوپا و استارتاپ‌ها در فرآیند سرمایه‌گذاری خطرپذیر، به دلیل نداشتن سابقه تاریخی کار دشواری است و یکی از موارد اصلی که می‌تواند بر دقت ارزیابی و درنتیجه انتخاب مورد مناسب برای سرمایه‌گذاران خطرپذیر کمک کند، شناسایی و تحلیل ریسک‌های کیفی این کسب و کارها است. مسئله اصلی این پژوهش، اول شناسایی عوامل کلیدی ریسک بر مبنای پژوهش‌های قبلی و بررسی مدل‌های ارزیابی ریسک در شرکت‌های سرمایه‌گذاری خطرپذیر است و دوم بررسی وابستگی‌های علی میان عوامل کلیدی ریسک است که در تحلیل، شناخت و اطلاع از وضعیت ریسک کسب و کارهای موجود در سبد سرمایه‌گذاران خطرپذیر کاربرد دارد.



روش: در این پژوهش، با استفاده از روش دلفی، با نظرسنجی از 30 نفر از خبرگان فعال در حوزه سرمایه‌گذاری خطرپذیر ایران، عوامل کلیدی ریسک شناسایی شد. بر اساس نتایج به دست آمده از مرحله اول دلفی، نظراتی که خارج از بازه ∓2σ بود شناسایی شد و برخی از آنها نظرات خود را اصلاح کردند. در دور دوم دلفی با محاسبه ضریب همستگی درونی و آلفای کرونباخ، میزان همبستگی نتایج بررسی و مهم‌ترین و اصلی‌ترین عوامل کلیدی ریسک از طریق روش دلفی تائید شد. سپس با استفاده از روش دیمتل ماتریس روابط بین عوامل کلیدی ریسک از طریق ماتریس دیمتل به دست آمد. در نهایت بر اساس روابط کمی بین عوامل کلیدی ریسک نمودار روابط علی معلولی و هم چنین نقشه شبکه‌ای روابط دیمتل ترسیم شد.



یافته‌ها: با توجه به نتایج پژوهش؛ 8 شاخص کلیدی با به کارگیری روش دلفی مورد تائید نهایی خبرگان قرار گرفت و بر اساس آلفای کرونباخ و ضریب همبستگی درونی، میزان اتفاق نظر خبرگان مورد تائید قرار گرفت . بر اساس یافته‌ها شاخص ریسک مالی، ریسک عملیاتی، ریسک بازار، ریسک قانونی و حقوقی، ریسک استراتژیک، ریسک اعتباری، ریسک فناوری و ریسک آینده کسب و کار مورد تائید قرار گرفت. در مرحله دوم که با هدف بررسی روابط میان عوامل کلیدی ریسک انجام شد، نتایج روش دیمتل نشان می‌دهد؛ عوامل ریسک مالی، ریسک استراتژیک و ریسک عملیاتی به ترتیب دارای بیشترین ضریب تاثیرگذاری بر سایر عوامل کلیدی ریسک است و عوامل ریسک آینده طرح کسب و کار، ریسک اعتباری و ریسک حقوقی و قانونی بیشترین ضریب تاثیرپذیری از سایر عوامل کلیدی ریسک را دارند.



نتیجه‌گیری: این پژوهش با هدف شناسایی و بررسی وابستگی‌های علی میان عوامل کلیدی ریسک در شرکت‌های استارتاپی در فصای سرمایه‌گذاری خطرپذیر ایران انجام شد. از این رو با استفاده از روش دلفی عوامل کلیدی ریسک شناسایی و تائید شدند و سپس با استفاده از روش دیمتل، وابستگی‌ها و روابط علی میان عوامل کلیدی ریسک شناسایی شد. بر اساس نتایج به دست آمده مشخص شد؛ عوامل کلیدی ریسک از طریق ضرایبی که در مدل خروجی دیمتل استخراج و در قالب نمودار علی و معلولی آورده شد، با یکدیگر ارتباط تاثیرپذیری و تاثیرگذاری دارند و نهادهای سرمایه‌گذاری خطرپذیر برای ارزیابی شرکت‌های سرمایه‌پذیر می‌توانند از این مدل استفاده کنند. نوآوری این پژوهش نسبت به پژوهش های قبلی در دو بعد؛ بررسی ارتباط میان عوامل کلیدی ریسک و هم چنین بررسی روابط معکوس میان عوامل کلیدی ریسک است.

کلیدواژه‌ها


عنوان مقاله [English]

Identifying risk factors and their causal dependencies in startups: A Delphi-DEMATEL study in the context of Iranian venture capital

نویسندگان [English]

  • Mohammad Rahimi Kelishadi 1
  • Saeed Fathi 2
  • Saeed Jahanyan 1
  • Yahya Palizdar 3
1 Department of Management, Faculty of Administrative Sciences and Economics, University of Isfahan, Isfahan, Iran.
2 Associate Professor University of Isfahan
3 Research Institute of Nanotechnology and Advanced Materials, Tehran, Iran
چکیده [English]

Introduction: Venture capital is one of the newest concepts that has attracted significant attention from investment professionals in recent years. A major challenge in venture capital is the risk analysis of knowledge-based companies and startups. A review of the literature indicates that valuation of knowledge-based companies and startups in the venture capital process is a difficult task due to their lack of historical records. One of the key factors that can enhance the accuracy of evaluations and, consequently, help venture capitalists select suitable investment opportunities is the identification and analysis of qualitative risks. The primary objectives of this study are, first, to identify key risk indicators based on previous studies and examine risk assessment models in venture capital firms, and second, to model the relationships between key risk indicators, which can aid in analyzing, understanding, and assessing the value of businesses within venture capitalists' portfolios.

Method: In this study, at the first step, the Delphi method was implemented by surveying 30 experts active in the venture capital field. Based on the results obtained from the first Delphi round, opinions falling outside the ±2σ range were identified, and some experts revised their responses. In the second Delphi round, internal correlation coefficients and Cronbach’s alpha were calculated to examine the consistency of the results, and the most critical key risk indicators were determined through the Delphi method. Subsequently, the DEMATEL method was used to quantitatively analyze the relationships between key risk indicators in investee companies.

Results and Discussion: According to the findings, after conducting two Delphi rounds, eight key indicators were finalized and approved by the experts. Based on Cronbach’s alpha and internal correlation coefficients, the consensus among experts was confirmed. The approved key risk indicators included financial risk, operational risk, market risk, legal and regulatory risk, strategic risk, credit risk, technological risk, and business future risk. In the second phase, which aimed to examine the relationships between key risk indicators, the DEMATEL results showed that financial risk, strategic risk, and operational risk had the highest influence coefficients on other key risk indicators, while business future risk, credit risk, and legal and regulatory risks had the highest dependence coefficients, meaning other key risk indicators most influenced them. This indicates that key risk indicators are highly interrelated.

Conclusion This study was conducted with the aim of identifying and examining the causal dependencies among key risk factors in startup companies within the Iranian venture capital space. Accordingly, the key risk factors were identified and confirmed using the Delphi method. Subsequently, the dependencies and causal relationships among the key risk factors were identified using the DEMATEL method. Based on the obtained results, it was determined that the key risk factors have influential and impactable interrelationships through the coefficients extracted from the DEMATEL output model, which were presented in the form of a causal diagram. Venture capital institutions can use this model to evaluate potential investee companies. The innovation of this research compared to previous studies lies in two dimensions: first, examining the relationships among key risk factors, and second, investigating the reverse relationships between key risk factors.

کلیدواژه‌ها [English]

  • Venture Capital
  • Risk
  • Delphi
  • DEMATEL
Achleitner, C.-M., Schwienbacher, A., & Thum, M. (2004). Estimating the Beta for Early Stage High-tech Start-up Companies: A Proposed Standardized Assessment Scheme. Financial Management and Valuation, 4(2), 25-45.
Jha, A., & Aggarwal, G. (2016). Estimation of Beta values of Indian power generation projects. World2(1), 021-045.‏
Alperovych, Y., Hübner, G., & Lobet, F. (2015). How does governmental versus private venture capital backing affect a firm's efficiency Evidence from Belgium. Journal of Business Venturing, 30(4), 508–525.
Aouni, B., Colapinto, C., & La Torre, D. (2013). A cardinality constrained stochastic goal programming model with satisfaction functions for venture capital investment decision making, Annals of Operations Research, 205(1),14-28.
Barrios, M., Guilera, G., Nuño, L., & Gómez-Benito, J. (2021). Consensus in the Delphi method: What makes a decision change? Technological Forecasting and Social Change, 163, 120484.
Barlas, Y. (2012). System dynamics: systemic feedback modeling for policy analysis in knowledge for sustainable development-an insight into the encyclopedia of life support systems. Paris, France, Oxford, UK: UNESCO Publishing-Eolss Publishers.
Blank, S.; Dorf, B. (2014). Manual do Empreendedor – O Guia Passo A Passo Para Construir Uma Grande Empresa, Alta Books.
Block, J. R., Chen, Y., & Huang, J. (2017). The Usefulness of Beta for Estimating the Cost of Equity of Early Stage Investments. The Journal of Entrepreneurial Finance, 21(1), 1-18.
Bornholt . G.N.(2006) "Expected utility and mean-risk asset pricing models. Working paper. Griffith university.
Brockman, P., Guo, T., Vivero, M. G., & Yu, W. (2009). Is idiosyncratic risk priced? The international evidence. The International Evidence (July 11, 2009).‏
Busha, C. H., & Harter, S. P. (1980). Research methods in librarianship: Techniques and interpretations (pp. 176-178). Academic Press.
Chizari, V., Mohammadian, A., Khalili Iraqi, M., & Rashadatjou, H. (2022). A procedural model for valuing early-stage fintech startups from the perspective of venture capitalists in Iran. Financial Research Journal, 24(3), 391–409. [In Persian]
Dalkey, N. and Helmer, O. (1963): An experimental application of the Delphi method to the use of experts. Management Science, 9(3), 458–467.
Damodaran, A. (2009). Valuing young, start-up and growth companies: Estimation issues and valuation challenges. SSRN Electronic Journal. doi:10.2139/ssrn.1418687
David S. Brown, William A. Sahlman, and Michael J. Brennan (2009). A Critical Review of the Capital Asset Pricing Model (CAPM) in Startup Valuation. The Journal of Applied Corporate Finance, 5(6)
Delavoo, M., & Rezaei, V. (2019). The explanatory power of higher systematic moments in the conditional capital asset pricing model. Financial Management Perspective, 9(27), 9–28. [In Persian]
Dittmann, I., Maug, E. & Kemper, J., 2004. How Fundamenal are Fundamental Values? Valuation Methods and their Impact on the Performance of German Venture Capitalists. European Financial Management, 10(4), 609-638.
Eslami Bidgoli, G., & Ahmadi Avval, M. (2010). Investigating the factors affecting the evaluation of entrepreneurial projects in venture capital companies. Entrepreneurship Development, 2(8), 99–120. [In Persian]
Fama, E. F., & French, K. R. (2004). The capital asset pricing model: Theory and evidence. Journal of economic perspectives18(3), 25-46.‏
Festel, G., Wuermseher, M., & Cattaneo, G. (2013). Valuation of early-stage high-tech startup companies. International Journal of Business, 18(3), 120-165
Forrester, J. W., & Brink, H. M. (1999). Industrial dynamics (Student's ed.). MIT Press.
Gabus, A., & Fontela, E. (1971). Deductive model of aggregation of temporal evidence with local interaction. *International Journal of Man-Machine Studies, 3*(4), 279-291
Garkavenko, M., Beliaeva, T., Gaussier, É., Mirisaee, H., Lagnier, C., & Guerraz, A. (2022). Assessing the factors related to a start-up's valuation using prediction and causal discovery. Entrepreneurship Theory and Practice, 47(5), 225-278
Gavious, I., & Schwartz, D. (2011). Market Valuations of Start-up Ventures around the Technology Bubble. International Small Business Journal, 29, 399-415.
Gliem, J. A., & Gliem, R. R. (2003). Calculating, interpreting, and reporting Cronbach’s alpha reliability coefficient for Likert-type scales. Proceedings of the 2003 Midwest Research to Practice Conference in Adult, Continuing, and Community Education, (pp. 82-88).
Ghasedi Qazvini, F., Faezi Razi, F., & Heidarpour, F. (2016). Using data mining methods to predict and respond to needs in the field of venture capital. Financial Knowledge of Securities Analysis, 10(35), 99–119. [In Persian]
Glaveckaitė, Ž. (2020). The Development Process of the Right Team in Early-Stage Start-Ups. Entrepreneurship and Sustainability Issues, 8, 1041-1063.
Gompers, P. A., & Lerner, J. (2001). The venture capital revolution. Journal of Economic Perspectives, 15(2),15
Goyal, A., & Santa Clara, P. (2003). Idiosyncratic Risk Matters, Journal of Finance, 58(3), 975-1007.
Hall, J, and Hofer, C, W. (1993), Venture Capitalist decision criteriain new venture evaluation, Journal of Business Venturing, 8(1), 25-425
Hanafizadeh, P., & Ashrafi Tabar, N. (2019). Valuation of selected crowdfunded projects. Financial Management Strategy, 7(25), 1–20. [In Persian]
Hidayat, S. E., Bamahriz, O., Hidayati, N., Sari, C. A., & Dewandaru, G. (2022). Value drivers of startup valuation from venture capital equity-based investing: A global analysis with a focus on technological factors. Borsa Istanbul Review, 22(4), 653-667
Jalilvand, A., Rostami Nowrouz Abad, M., Askari Firuzjaei, E., & Rahmani Ani, M. (2019).Implementing organizational risk management; identification, analysis and evaluation: Case study of an active financial institution in Iran's capital market. Asset Management and Financing, 7(2), 1–14.
Jiménez, L., & González, P. (2008). Multicriteria cash-flow modeling and project value-multiples for two-stage project valuation. International Journal of Project Management, 26(2), 185-194.
John L. (1965). "The Valuation of Risk Assets and the Selection of Risky Investments in Stock Portfolios and
Kupor, S. (2019). Secret of Sandhill Road. US: Portfolio
Lerner, J. (2002). When bureaucrats meet entrepreneurs: the design of effectivepublic venture capital'programmes. The economic journal, 112(477), 73-84.‏
Maxwell, A. L., Jeffrey, S. A., & Levesque, M. (2011). Business angel early stage decision making. Journal of Business Venturing, 26(2), 212-225
MacMillan, I. C., Kulow, D. M., & Khoylian, R. (2022). Venture capitalists' involvement in their investments: Extent and performance. In Venture Capital (pp. 245-265). Routledge.‏
McNeil, A. J., Frey, R., & Embrechts, P. (2015). Quantitative risk management: Concepts, techniques, and tools (2nd ed.). Princeton University Press.
Mehrani, K., Mehrani, K., & Mirsanei, R. (2013). Stock valuation:Methods and models. Mehraban Publishing. [In Persian]
Merton, R. C. (1987). A simple model of capital market equilibrium with incomplete information. Journal of Finance, 42(3), 483-510.
Metrick, A, Ayako .Y. (2021) Venture capital and the finance of innovation. United States, John Wiley and Sons
Morck, R., Yeung, B., & Yu, W. (2000). The information content of stock markets: why do emerging markets have synchronous stock price movements. Journal of financial economics58(1-2), 215-260.‏
Moniz, A. (2005). Methods for scenario-building: Its importance for policy analysis [Paper presentation]. Workshop on Innovative Comparative Methods for Policy Analysis, Munich, Germany.
Moradi, M. H., Abdoli, M. R., Salehi, N., Valian, H., & Safari Graili, M. (2024). Futures studies of startup financing drivers based on libertarian philosophical strategies (metaphysics) of capital market companies. Financial Research Journal, 26(4), 758–790. [In Persian]
Nair, G. K., & Rodrigues, L. L. R. (2013). Dynamics of financial system: A system dynamics approach. International Journal of Economics and Financial, 3(1), 14–26
Powell , C (2003 ). The Delphi technique: myths and realities. Journal of Advanced Nursing. 41(4), 376–382 .
Quindlen )2000(. R , Confessions of a venture capitalist: inside the high-stakes world of new venture Financing. New York. NY,: Warner books
Rashidi, M. A., Hamidia, B., & Hassanzadeh, H. (2025). Designing a model of key success factors for venture capital firms in the Islamic Republic of Iran. Asset Management and Financing, 13(2), 29–54. [In Persian]
Rogers, S. (2014). Finance for entrepreneurs. Jihad Daneshgahi Publications.
Rydberg.Karl and Froidstedt. John (2016). "How can investors evaluate equity crowdfunding offers?". School of business, economic and law at Gothenburg university
Sammut, S. M. (2012). What every biotechnology entrepreneur needs to know about VC due diligence. Journal of Commercial Biotechnology, 18(2), 72–77.
Sharpe, W. F. (1964). Capital asset prices: A theory of market equilibrium under conditions of risk. The journal of finance19(3), 425-442.‏
Shams, S., & Khalili, M. (2011). Investigating the relationship between intellectual capital and financial performance of companies listed on the Tehran Stock Exchange. Financial Management Perspective, 1(1), [Page numbers not provided]. [In Persian]
Sharpe, W. F. (1964). Capital asset prices: A theory of market equilibrium under conditions of risk. Journal of Finance, 19(3), 425-442.
Silva, J. (2004), Venture capital decision making in small equity markets: Acase study using participant observation. Venture Capital, 6(2-3), 125-145
Sterman, J. D. (2000). Business dynamics: Systems thinking and modeling for a complex world. Irwin/McGraw-Hill.
Taghipour, E., Nasri, F., Yazdanshenas, M., & Sadegh, S. (2020). Identification, evaluation, and ranking of risks in marine knowledge-based companies using hybrid models. Interdisciplinary Studies in Strategic Knowledge, 11(42), 415–442. [In Persian]
Trevithick, S., Flabouris, A., Tall, G., Webber, C., (2003). International EMS systems: New South Wales. Australia, Resuscitation, 59(2), 165-70.
Van Osnabrugge, M., & Robinson, R.J. (2000), Angel Investing: Matching Start-up Funds with Start-up Companies: The Guide for Entrepreneurs, Individual Investors, and Venture Capitalist, San Francisco: Jossey-Bass.
Veer, T., Yang, P., & Riepe, J. (2022). Ventures' conscious knowledge transfer to close partners, and beyond: A framework of performance, complementarity, knowledge disclosure, and knowledge broadcasting. Journal of business venturing37(3), 106-191
Weaver, W. T. (1971). The Delphi forecasting method. The Phi Delta Kappan, 52(5), 267–271.
Wright, M, and Robbie,K . (1998), Venture Capital and private equity: A review and synthesis, Journal of Business Finance & Accounting, 25(5-6), 521-570
Wright, M., & Lockett, A. (2004). The Structure and Management of Alliances: Syndication in the Venture Capital Industry. Journal of Management Studies, 40(8), 2073–2102.
Wright, M. et al., 2004. Venture Capital Investors, Capital Markets, Valuation and Information: US, Europe and Asia. Journal of International Entrepreneurship, 56(2), 305-326.
Zhang, J. (2011). The advantage of experienced start-up founders in venture capital acquisition: Evidence from serial entrepreneurs. Small Business Economics, 36(2), 187-208.
Zopounidis, C., & Doumpos, M. (2002). Multi-criteria decision aid in financial decision making: methodologies and literature review. Journal of Multi-Criteria Decision Analysis, 11*(4–5), 167–186