بهینه‌سازی هوشمند سبد سهام با استفاده از الگوریتم‌های چرخه آب و گرگ خاکستری

نوع مقاله : علمی - پژوهشی

نویسندگان

1 استادیار گروه اموزشی ریاضی مالی، دانشکده علوم پایه،دانشگاه آیت الله بروجردی.

2 کارشناس ارشد گروه ریاضی مالی، دانشکده علوم پایه، دانشگاه آیت الله بروجردی، بروجرد، ایران.

چکیده

هدف: این مطالعه به ارزیابی و مقایسه عملکرد الگوریتم‌های فراابتکاری با مدل کلاسیک مارکوویتز برای بهینه‌سازی سبد سهام در بازار سهام ایران که دارای نوسانات بالا و ناکارآمدی است، می‌پردازد. هدف اصلی، شناسایی تخصیص بهینه دارایی از بین ۶۴ شرکت پذیرفته شده در بورس اوراق بهادار تهران طی یک دوره پنج‌ساله (1398-1403) و ارزیابی منتقدانه بده‌بستان‌های ارائه شده توسط هر روش از نظر ریسک، بازده و کارایی محاسباتی است. این نکته نشان می‌دهد که راه‌حل‌های فراابتکاری می‌توانند در کنار مدل کلاسیک مارکوویتز عملکرد بهتری در برخی جنبه‌های عملی سرمایه‌گذاری ارائه دهند، ضمن اینکه انتخاب نهایی باید مطابق با اولویت‌های سرمایه‌گذار باشد. این مطالعه چارچوبی کارآمد برای مدیران پرتفوی فراهم می‌کند تا ابزار بهینه‌سازی را بر اساس هدف ریسک-بازده و مهلت‌های تصمیم‌گیری خود ترکیب کنند.

روش: این مطالعه از یک چارچوب تحلیلی مقایسه‌ای استفاده می‌کند و مدل بهینه‌سازی میانگین -واریانس کلاسیک مارکوویتز را در مقابل دو الگوریتم فراابتکاری قرار می‌دهد: الگوریتم چرخه آب (WCA) و بهینه‌ساز گرگ خاکستری (GWO). با استفاده از داده‌های تاریخی پنج‌ساله از ۶۴ شرکت در بورس اوراق بهادار تهران (1398-1403)، سبدهای سهام بهینه را بر اساس هر روش ایجاد می‌شود. سپس یک دستورالعمل جامع ارزیابی ریسک اعمال می‌گردد تا عملکرد سبد سهام را نه‌تنها از طریق معیارهای سنتی مانند نسبت شارپ و انحراف معیار، بلکه با ترکیب معیارهای پیشرفته ریسک مانند ارزش در معرض ریسک (VaR)، ارزش در معرض ریسک شرطی (CVaR) و حداکثر افت سرمایه (MDD) برای ارائه یک ارزیابی چندوجهی موردمطالعه و بررسی قرار دهد. در این راستا کارایی محاسباتی هر الگوریتم نیز به طور دقیق محک زده شد.

یافته‌ها: نتایج به‌دست‌آمده، نکات ظریفی و قابل تأملی را ارائه می‌دهند. الگوریتم چرخه آب مزیت قابل‌توجهی در کارایی محاسباتی نشان می‌دهد که تقریباً 6.7 برابر سریع‌تر از بهینه‌ساز گرگ خاکستری است. علاوه بر این، در به حداقل رساندن حداکثر افت سرمایه ، یک معیار ریسک حیاتی برای حفظ سرمایه در درازمدت، عملکرد فوق‌العاده‌ای داشت. با این حال، برخلاف فرضیه اولیه، مدل مارکوویتز در کنترل نوسانات روزانه (انحراف معیار) و کاهش ریسک دنباله افراطی از WCA بهتر عمل کرد. GWO به طور مداوم در تمام معیارهای کلیدی عملکرد ضعیف‌تری داشت. این یافته‌ها تأکید می‌کنند که برتری الگوریتم به شدت به معیار ریسک خاصی که توسط سرمایه‌گذار اولویت‌بندی می‌شود، وابسته است، نه اینکه یک برنده مطلق را ارائه دهد.

نتیجه‌گیری: از نتایج این تحقیق آن است که روش‌های فراابتکاری مدرن مانند WCA جایگزین‌های کاملی نیستند، بلکه مکمل‌های قدرتمندی برای مدل‌های کلاسیک هستند.WCA به‌عنوان ابزاری برتر برای سرمایه‌گذارانی که سرعت محاسباتی و انعطاف‌پذیری در برابر رکودهای طولانی‌مدت بازار را در اولویت قرار می‌دهند، پدیدار می‌شود. در مقابل، مدل مارکوویتز همچنان یک انتخاب قوی برای مدیریت نوسانات کوتاه‌مدت است. این مطالعه بر لزوم همسو کردن انتخاب ابزار بهینه‌سازی با اهداف سرمایه‌گذاری خاص و تعاریف ریسک تأکید می‌کند و یک چارچوب عملی برای سرمایه‌گذاران و مدیران پرتفوی در بازارهای نوظهور مانند ایران ارائه می‌دهد. این تحقیق با ارائه چارچوب مقایسه‌ای منسجم، به کارفرمایان و سرمایه‌گذاران نشان می‌دهد که پیاده‌سازی آزمایشی و ارزیابی مستمر با در نظر گرفتن ابعاد مختلف ریسک (VaR، CVaR، MDD) و معیارهای کارایی محاسباتی، می‌تواند به بهبود کیفیت تصمیم‌گیری‌ها در بازارهای با اطلاعات ناقص کمک کند.

کلیدواژه‌ها


عنوان مقاله [English]

Intelligent portfolio optimization using water cycle and gray wolf algorithms

نویسندگان [English]

  • Marjan Aliyari 1
  • Zahra Rabie 2
  • Hosein Nasrolahi 2
1 Assistant professor Financial Mathematics Department, Faculty of Basic Sciences, Ayatollah Boroujerdi University.
2 Master of Science, Department of Financial Mathematics, Ayatollah Boroujerdi University, Boroujerd, Iran.
چکیده [English]

Abstract

Objective: This study evaluates and compares the performance of two groups of optimization approaches for portfolio optimization in the Iranian stock market, which exhibits high volatility and inefficiencies, against the classical Markowitz mean-variance model. The primary aim is to identify the optimal asset allocation among 64 listed companies on the Tehran Stock Exchange over a five-year period (2019–2024) and to critically assess the trade-offs offered by each method in terms of risk, return, and computational efficiency. This point suggests that innovative metaheuristic solutions can deliver better performance than the classical Markowitz model in certain practical aspects of investment, while the final choice should align with the investor’s priorities. The study provides an efficient framework for portfolio managers to combine optimization tools according to risk–return goals and decision deadlines.



Method: This study employs a comparative analytical framework, placing the classical Markowitz mean–variance optimization model against two metaheuristic algorithms: the Water Cycle Algorithm (WCA) and Grey Wolf Optimizer (GWO). Using five-year historical data from 64 Tehran Stock Exchange companies (1), optimal portfolios are constructed for each method. A comprehensive risk evaluation framework is then applied to assess portfolio performance not only through traditional metrics such as the Sharpe ratio and standard deviation but also through advanced risk measures, including Value at Risk (VaR), Conditional Value at Risk (CVaR), and Maximum Drawdown (MDD), to provide a multi-faceted examination. In this context, the computational efficiency of each algorithm is also measured precisely.

Findings: The results yield nuanced and noteworthy insights. The Water Cycle Algorithm demonstrates a substantial advantage in computational efficiency, being approximately 6.7 times faster than the Grey Wolf Optimizer. Additionally, it achieves excellent performance in minimizing Maximum Drawdown, a critical risk metric for capital preservation in the long term. However, contrary to the initial hypothesis, the Markowitz model excels in controlling daily volatility (standard deviation) and reducing tail risk from extreme events better than WCA. GWO consistently performs weaker across all key performance metrics. These findings emphasize that the superiority of an algorithm depends heavily on the particular risk criterion prioritized by the investor, rather than presenting a universal winner.

Conclusion: The results indicate that modern metaheuristic methods like WCA are not complete substitutes but rather powerful complements to classical models. WCA emerges as a leading tool for investors prioritizing computational speed and resilience to prolonged market downturns. By contrast, the Markowitz model remains a strong choice for managing short-term volatility. The study underscores the necessity of aligning the optimization tool with specific investment objectives and risk definitions, providing a practical framework for investors and portfolio managers in emerging markets like Iran. The research, by offering a cohesive comparative framework, demonstrates that experimental implementation and continuous evaluation—taking into account various risk dimensions (VaR, CVaR, MDD) and computational efficiency metrics—can contribute to improved decision-making quality in markets characterized by imperfect information.

کلیدواژه‌ها [English]

  • Portfolio optimization.water cycle algorithm
  • gray wolf algorithm
  • Return
  • risk
  1. Abdolalizadeh Shahir, S., & Eshghi, K. (2004). Application of Genetic Algorithm in Portfolio Selection Problem. Iranian Journal of Economic Research5(17), 175-192.
  2. Ahmad, G., & Shahid, M. (2022, October). Towards portfolio selection in stock markets using grey wolf optimization approach. In 2022 International Conference on Data Analytics for Business and Industry (ICDABI) (pp. 756-760). IEEE.
  3. Aghamohammadi, R., Tehrani, R. & Khademi, M. (2022). Investigating the Effect of Study Period Selection on Solving Portfolio Optimization Based on Different Risk Criteria Using Meta-Heuristic Algorithms. Financial Management Perspective, 12(37), 95-122.
  4. Akbarifard, H., & Alaei, R. (2019). Stock Portfolio Optimization Using Water Cycle Algorithm (Comparative Approach). International Journal of Finance & Managerial Accounting, 4(14), 59-71.
  5. Chen, W. (2015). Artificial bee colony algorithm for constrained possibilistic portfolio optimization problem. Physica A: Statistical Mechanics and its Applications, 429, 125-139.
  6. Cheng, H., Zhou, H., & Shen, Y. (2024, November). An improved grey wolf optimization algorithm based on bounded subpopulation re-search strategy. I Journal of Physics: Conference Series (Vol. 2902, No. 1, p. 012035). IOP Publishing.
  7. Eskandar, H., Sadollah, A., Bahreininejad, A., & Hamdi, M. (2012). Water cycle algorithm. A novel metaheuristic optimization method for solving constrained engineering optimization problems. Computers Structures, 110- 111: 151-166.
  8. Eslami Bidgoli, G., & Tayebi Sani, E. (2013). A novel Meta-Heuristic method for solving an extended Markowitz Mean–Variance portfolio selection model. Journal of Investment Knowledge3,101-122.
  9. Gülpınar, N., & Rustem, B. (2007). Worst-case robust decisions for multi-period mean–variance portfolio optimization. European Journal of Operational Research, 183(3), 981-1000.
  10. Imran, M., Hasan, F., Ahmad, F., Shahid, M., & Abidin, S. (2022, March). Grey Wolf Based Portfolio Optimization Model Optimizing Sharpe Ratio in Bombay Stock Exchange. In International Conference on Machine Intelligence and Signal Processing (pp. 331-339). Singapore: Springer Nature Singapore.
  11. Gholami, N., & Shams Gharne, N. (2024). Presenting an Optimized CNN-LSTM Model for Stock Price Forecasting in the Tehran Stock Exchange. Financial Management Perspective, 14(45), 123-147.
  12. Kriksciuniene, D., Sakalauskas, V., & Imbrazas, A. (2020, December). Grey wolf optimization model for the best mean-variance based stock portfolio selection. In International Conference on Innovations in Bio-Inspired Computing and Applications (pp. 120-130). Cham: Springer International Publishing.

 

  1. Markowitz, H. M. (1991). Portfolio selection: Efficient diversification of investments. New York, NY: Yale University Press, John Wiley.
  2. Mazraeh, N. B., Daneshvar, A., Madanchi zaj, M., & Roodposhti, F. R. (2022). Stock portfolio optimization using a combined approach of multi objective grey wolf optimizer and machine learning preselection methods. Computational Intelligence and Neuroscience, 2022(1): 5974842.
  3. Mirjalili, A., Mirjalili, M., & Lewis, A. (2014). Grey Wolf Optimizer. Advances in Engineering Software, 69: 46–61.
  4. Mishra, S. K., Panda, G., & Majhi, B. (2016). Prediction based mean-variance model for constrained portfolio assets selection using multiobjective evolutionary algorithms. Swarm and Evolutionary Computation, 28,117-130.
  5. Mossin, J. (1968). Optimal multiperiod portfolio policies. The Journal of Business, 41(2), 215-229.
  6. Moradi, M. (2017). Portfolio Optimization in Tehran Stock Exchange by Water Cycle Algorithm. Financial Management Perspective, 7(20), 9-32.
  7. Navidi, H. R., Nejoomi Markid, A., & Mirzazadeh, H. (2010). Portfolio Selection in Tehran Stock Exchange Market with a Genetic Algorithm. Journal of Economic Research (Tahghighat-E-Eghtesadi), 44(4).
  8. Paiva, F. D., Cardoso, R. T. N., Hanaoka, G. P., & Duarte, W. M. (2019). Decision-making for financial trading: A fusion approach of machine learning and portfolio selection. Expert Systems with Applications, 115: 635–655.
  9. Perold, A. F. (1984). Large-scale portfolio optimization. Management science, 30(10), 1143-1160.
  10. Raei, R. (2002). Portfolio formation for the risk-tolerant investor: A comparison of neural networks and Markowitz. Business Management Perspective (Management Perspective (Management Message)), 2(2), 78-96.
  11. Sadollah, A., Eskandar, H., Kim, J. H., & Bahreininejad, A. (2014). Water cycle algorithm for solving multiobjective optimization problems. Soft Computing, 19: 2587-2603.
  12. Sadollah, A., Eskandar, H., & Kim, J. H. (2015). Water cycle algorithm for solving constrained multiobjective optimization problems. Applied Soft Computing, 27: 279-298.
  13. Strong (2000) Portfolio construction, management, and protection /. 2nd ed. South-Western College.