در این تحقیق، تلفیقی از مدل «مارکوف پنهان» و مفهوم «زنجیره مارکوف» بهمنظور پیشبینی رفتار بازارهای مالی ارائه شده است. این ابزار توسعهیافته میتواند در تجزیهوتحلیل بازار سهام، کاربردی مناسب داشته باشد. در ابتدا از الگوریتم ژنتیک بهمنظور تعیین و تنظیم پارامترهای مدل «مارکوف پنهان» استفاده میشود؛ سپس از مدل «مارکوف پنهان» تنظیم شده برای شناسایی و شناخت الگوهای مشابه در دادههای تاریخی استفاده میشود و پس از آن مقدار قیمت برای روز بعد با استفاده از الگوهای مشابه و مفهوم «زنجیره مارکوف» محاسبه میگردد. از چندین سهم بهمنظور دستیابی به نتایج مناسب استفاده شده است و سپس، نتایج مدل ارائهشده با نتایج مدل موجود در مبانی نظری و همچنین با روشهای معمول در اقتصادسنجی مقایسه شده است
Andriyas, Sanyogita and Mac McKee (2014). Exploring Irrigation Behavior at Delta, Utah Using Hidden Markov Models. Agricultural Water Management, 143: 48-58.
Babu, C. Narendra and B. Eswara Reddy (2014). A Moving-Average Filter Based Hybrid ArimaâAnn Model for Forecasting Time Series Data. Applied Soft Computing, 23: 27-38.
Chau, C. W., Kwong, S., Diu, C. K., & Fahrner, W. R. (1997). Optimization of HMM by a genetic algorithm. IEEE International Conference on Acoustics, Speech, and Signal Processing, 1727â1730.
Cheng, B., & Titterington, D. M. (1994). Neural networks: a review from statistical perspective. Statistical Science, 9(1), 2â54.
Chiang, W.-C., Urban, T. L., & Baldridge, G. W. (1996). A neural network approach to mutual fund net asset value forecasting. Omega International Journal of Management Science, 24(2), 205â215.
Damasio, Bruno and João Nicolau (2014). Combining a Regression Model with a Multivariate Markov Chain in a Forecasting Problem. Statistics & Probability Letters 90: 108-113.
De Souza e Silva, Edmundo G., Luiz F. L. Legey and Edmundo A. de Souza e Silva (2010). Forecasting Oil Price Trends Using Wavelets and Hidden Markov Models. Energy Economics 32: 1507-1519.
Erlwein, Christina, Fred Espen Benth and Rogemar Mamon (2010). Hmm Filtering and Parameter Estimation of an Electricity Spot Price Model. Energy Economics, 32(5): 1034-1043.
Fadaee nezhad, M, M Noforsati and V Shalbaf yazdi (2012). Baresi Ertebate Adame Naghdshavandegi Va Asare Gerayeshi Ba Dore Negahdari Saham Adi Dar Borse Tehran. Financial Management Perspective, 5.
Fakhari, H and Z Saber (2013). Baresi Tasire Ahrome Bedehi Amaliyati Bar Bazdehe Atiye Hoghoghe Sahebane Sahame Sherkathaye Pazirofte Shode Dar Borse Tehran. financial Management Perspective: 2-9.
Hassan, Md Rafiul (2009). A Combination of Hidden Markov Model and Fuzzy Model for Stock Market Forecasting. Neurocomputing, 72(16â18): 3439-3446.
Hassan, Md Rafiul, Baikunth Nath and Michael Kirley (2007). A Fusion Model of Hmm, Ann and Ga for Stock Market Forecasting. Expert Systems with Applications, 33(1): 171-180.
Khajavi, Sh and M Ebrahimi (2012). Baresi Tasir Ghodrate Bazare Mahsol Bar Naghdshavandegi Saham Sherkathaye Pazirofte Shode Dar Borse Tehran. Financial Management Perspective, 5.
Khajavi, Sh and N Rostamzade (2012). Baresi Rabete Sahame Shenavar Azad Ba Amalkarde Mali Sherkathaye Pazirofte Shode Dar Borse Tehran. Financial Management Perspective, 2-9.
Kim, K.-J., & Han, I. (2000). Genetic algorithms approach to feature discretization in artificial neural networks for the prediction of stock price index. Expert Systems with Applications, 19, 125â132.
Kimoto, T., Asakawa, K., Yoda, M., & Takeoka, M. (1990). Stock market prediction system with modular neural networks. In Proceeding of the international joint conference on neural networks (IJCNN) 1: 1â6.
Lee, Yumin and Lin-shan Lee (1993). Continuous Hidden Markov Models Integrating Transitional and Instantaneous Features for Mandarin Syllable Recognition. Computer Speech & Language, 7(3): 247-263.
Md. Rafiul, Hassan (2005). Stockmarket Forecasting Using Hidden Markov Model: A New Approach. edited by Nath Baikunth, 0, 192-196.
Merhav, Neri and Yariv Ephraim (1991). Hidden Markov Modeling Using a Dominant State Sequence with Application to Speech Recognition. Computer Speech & Language 5(4): 327-339.
Rabiner Fellow, Ieee Lawrence R (1990). A Tutorial on Hidden Markov Models and Selected Applications in Speech Recognition. In Readings in Speech Recognition, edited by Alex Waibel and Kai-Fu Lee, 267-296. San Francisco: Morgan Kaufmann.
Ripley, B. D. (1993). Statistical aspects of neural networks. In O. E. Brandorff-Nielsen, J. L. Jensen, & W. S. Kendall (Eds.), Networks and chaos-statistical and probabilistic aspects: 40â123. London: Chapman and Hall.
Romahi, Y., & Shen, Q. (2000). Dynamic financial forecasting with automatically induced fuzzy associations. In Proceedings of the 9th international conference on fuzzy systems, 493â498.
Sun, Wei, Hao Zhang, Ahmet Palazoglu, Angadh Singh, Weidong Zhang and Shiwei Liu (2013). Prediction of 24-Hour-Average Pm2.5 Concentrations Using a Hidden Markov Model with Different Emission Distributions in Northern California. Science of The Total Environment, 443, no. 0: 93-103.
Trafalis, T. B. (1999). Artificial neural networks applied to financial forecasting. In C. H. Dagi Dagli, A. L. Buczak, J. Ghosh, M. J.Embrechts, & O. Ersoy (Eds.), Smart engineering systems: neural networks, fuzzy logic, data mining, and evolutionary programming. Proceedings of the artificial neural networks in engineering conference (ANNIEâ99) 1049â1054. New York: ASME Press.
Tso, Brandt and Paul Y. Chang (2007). Mining Free-Structured Information Based on Hidden Markov Models. Expert Systems with Applications, 32(1): 97-102.
Wang, Yi-Fan, Shihmin Cheng and Mei-Hua Hsu (2010). Incorporating the Markov Chain Concept into Fuzzy Stochastic Prediction of Stock Indexes. Applied Soft Computing, 10(2): 613-617.
White, H. (1988). Economic prediction using neural networks: the case of IBM daily stock returns. In Proceedings of the second IEEE annual conference on neural networks, II. 451â458.
White, H. (1989). Learning in artificial neural networks: a statistical perspective. Neural Computation, 1, 425â464.
Xi, Xiaojing and Rogemar Mamon (2011). Parameter Estimation of an Asset Price Model Driven by a Weak Hidden Markov Chain. Economic Modelling, 28(1â2): 36-46.
Zhang, G., Patuwo, B. E., & Hu, M. H. (1998). Forecasting with artificial neural networks: the state of the art. International Journal of Forecasting, 14, 35â62.
Zhang, Hao, Weidong Zhang, Ahmet Palazoglu and Wei Sun (2012). Prediction of Ozone Levels Using a Hidden Markov Model (Hmm) with Gamma Distribution. Atmospheric Environment, 62, no. 0: 64-73.
Zhang, Wenjing and Xin Feng (2012). A New Ensemble Learning Method for Temporal Pattern Identification." Procedia Computer Science, 12, no. 0: 102-109.