رابطه بین سیاست‌های پولی و تغییرات نرخ ارز با رفتارهای توده‌وار سهامداران

نوع مقاله : علمی - پژوهشی

نویسندگان

1 استادیار، گروه مدیریت مالی و بیمه، دانشکده مدیریت و حسابداری، دانشگاه شهید بهشتی، تهران، ایران.

2 کارشناسی ارشد حسابداری، گروه حسابداری، دانشگاه فردوسی مشهد، مشهد، ایران

چکیده

هدف: در بازارهای مالی و مطالعات مالی-رفتاری، رفتار توده‌وار سهامداران عنصری با اهمیت محسوب شده و به فرایندی اشاره دارد که در آن، فعالان بازار سرمایه تصمیمات خود را بدون توجه به اطلاعات و تحلیل‌های خود و به تقلید از رفتار دیگران، اخذ می‌نمایند. تجزیه و تحلیل رفتار توده‌وار می‌تواند درک ما را از چگونگی شکل‌گیری حباب در بازارهای سهام و کمک به افزایش کارایی بازار سرمایه، بهبود بخشد. با عنایت به اهمیت رفتارهای توده‌وار، در این پژوهش به بررسی رابطه بین سیاست‌های پولی و تغییرات نرخ ارز با رفتارهای توده‌وار سهامداران پرداخته شده است.
روش: به منظور اندازه‌گیری رفتارهای توده وار از مدل چانگ و همکاران (2000) استفاده شده؛ مطابق این مدل، هنگامی که انحراف بازده سهام شرکت‌های موجود در بازار از بازده بازار کاهش یابد، نشانه‌های شکل‌گیری رفتار توده‌وار سهامداران احراز می‌شود. همچنین جهت اندازه‌گیری متغیرهای سیاست‌های پولی و تغییرات نرخ ارز، به ترتیب از شاخص‌های تغییرات فصلی حجم نقدینگی و نیز تغییرات ماهانه نرخ ارز استفاده شده است.
یافته‌ها: با استفاده از داده‌های سری زمانی طی سال‌های 1390 تا 1400 (شامل داده‌های 133 شرکت پذیرفته شده در بورس اوراق بهادار تهران) و استفاده از رگرسیون چند متغیره جهت تحلیل داده‌ها و آزمون فرضیه‌ها، نتایج تحقیق نشان می‌دهد که تغییرات نرخ ارز سبب شکل‌گیری رفتارهای توده‌وار در بورس اوراق بهادار تهران می‌گردد. مضافا، مطابق نتایج تحقیق هرچند تغییرات حجم نقدینگی سبب تشکیل رفتارهای توده‌وار سهامداران می‌شود لیکن، این نتایج از نظر آماری معنی‌دار نمی‌باشد.
نتیجه‌گیری: رفتارهای توده‌وار سهامداران، سبب افزایش فاصله بین قیمت بازار و ارزش ذاتی سهام شده و افزایش ریسک سقوط قیمت سهام و کاهش کارایی بازار سرمایه را به دنبال دارد. مضافا نتایج برخی مطالعات نشان داده که رفتارهای توده‌وار زمانی که بازارها در وضعیت با ثبات قرار دارند (صعودی و یا نزولی) نسبت به زمانی که دچار آشفتگی بوده و ابهام بر بازار حاکم می‌باشد، بیشتر مشاهده می‌شود. مفهوم این موضوع آن است که اگر سیاست‌گذاران قصد اثرگذاری بر رفتارهای توده‌وار را دارند، باید زودتر و در زمانی که بازارها هنوز در وضعیت با ثبات هستند و قبل از ورود بازار به بحران مالی و شکل‌گیری حباب، تصمیمات لازم را اتخاذ و اجرا نمایند. با عنایت به نتایج تحقیق در خصوص تاثیر نوسانات نرخ ارز بر شکل‌گیری رفتار توده‌وار ، پیشنهاد می‌شود تصمیم‌گیران در سازمان بورس از این عامل به منظور جهت دهی به رفتارهای سرمایه‌گذاران و حرکت بازار به سمت ارزش‌های ذاتی و پیش گیری از شکل‌گیری حباب و نیز ریزش بیش از حد بازار، استفاده نمایند. به طور کلی، پیامد مهم نتایج این مطالعه ارائه این موضوع است که ناظران بازار، قانون گذاران و به طور خاص بانک مرکزی، می‌بایستی هنگام طراحی سیاست‌ها و اخذ تصمیمات مرتبط با سیاست‌های پولی شامل تعیین حجم نقدینگی و کنترل نرخ ارز، محدودیت‌های بالقوه مدل‌های منطقی موجود را در نظر بگیرند. ضمن آنکه می‌بایستی عناصر رفتاری نگرش مشارکت کنندگان در بازار و سویه‌های روانی و شناختی در هنگام اخذ تصمیمات یاد شده، در نظر گرفته شود.

کلیدواژه‌ها


عنوان مقاله [English]

Relationship monetary policies and changes in exchange rate with herding behavior

نویسندگان [English]

  • Mohammad Osoolian 1
  • Mohamadreza Asiaie 2
1 Assistant Professor, Department of Financial Management and Insurance, Management and Accounting Faculty, Shahid Beheshti University, Tehran, Iran
2 Master of Accounting, Department of Accounting, Ferdowsi University of Mashhad, Mashhad, Iran.
چکیده [English]

Purpose: In financial markets and behavioral finance studies, the herding behavior of shareholders is considered an important variable. This behavior refers to a process in which capital market participants make decisions without relying on their own information and analysis, instead imitating the actions of others. Analyzing herding behavior can enhance our understanding of how bubbles form in stock markets and contribute to increased capital market efficiency. Herding behavior can distort asset prices, leading to deviations from their fundamental values, which subsequently impacts overall market stability. By understanding the factors that drive herding behavior, policymakers and market regulators can implement strategies to mitigate its adverse effects.
Method: Given the significance of collective behavior, this research examines the relationship between monetary policies, changes in exchange rates, and the herding behavior of shareholders. To measure herding behavior, we utilized the model proposed by Chang et al. (2000). According to this model, herding behavior is indicated when the deviation of stock returns from the market return decreases, suggesting that investors are following the market trend rather than making independent decisions. Furthermore, to measure monetary policy variables and exchange rate changes, we employed indicators of seasonal changes in liquidity volume and monthly changes in the exchange rate, respectively. Using time series data from 2011 to 2021, which includes information from 133 companies listed on the Tehran Stock Exchange, we applied multivariate regression analysis to test our hypotheses. This comprehensive dataset allowed us to capture various economic conditions and policy changes over a significant period.
Findings: The research results indicate that changes in the exchange rate lead to the formation of herding behavior in the Tehran Stock Exchange. This suggests that as the exchange rate fluctuates, investors tend to mimic the actions of others rather than rely on their own analysis. Additionally, while changes in liquidity volume also contribute to the emergence of herding behavior among shareholders, these results were not statistically significant. This implies that liquidity alone may not be a strong enough factor to drive herding behavior, or that other underlying factors may be influencing these outcomes. The findings highlight the importance of exchange rate stability in maintaining market discipline and preventing irrational collective behaviors.
Conclusion: The herding behavior of shareholders has increased the distance between the market price and the intrinsic value of the stock, leading to an increase in stock prices and impacting the efficiency of the capital market. This misalignment between market prices and intrinsic values can create conditions for market bubbles and subsequent crashes. Some studies show that herding behavior is more prevalent when markets are in a stable state (rising or falling) than during periods of chaos and uncertainty. This indicates that investors are more likely to follow the crowd during predictable market conditions, while in volatile times, individual decision-making becomes more pronounced. Policymakers aiming to influence mass behavior should make decisions and implement policies when markets are stable, before a financial crisis or bubble formation occurs. Proactive measures can include regulatory interventions to ensure market transparency and the dissemination of accurate information to all market participants. Considering the results of the research on the effect of exchange rate fluctuations on the formation of mass behavior, it is recommended that stock exchange organizations use this factor to improve investment behavior, guide the market towards intrinsic values, and prevent bubble formation and subsequent collapse. Market supervisors, lawmakers, and the central bank should consider the potential limitations of rational models when designing policies and making decisions related to monetary policies, including determining liquidity levels and controlling the exchange rate. Additionally, the behavioral elements of market attitudes and psychological and cognitive factors should be taken into account when making these decisions. By addressing these aspects, policymakers can better manage market dynamics and foster a more stable financial environment.

کلیدواژه‌ها [English]

  • Herding Behavior
  • Exchange Rate Changes
  • Monetary Policies
  • Liquidity Volume
Amador, M., & Weill, P.-O. (2010). Learning from Prices: Public Communication and Welfare. Journal of Political Economy, 118(5), 866-907.
Armstrong, C. S., Guay, W. R., & Weber, J. P. (2010). The Role of Information and Financial Reporting in Corporate Governance and Debt Contracting. Journal of Accounting and Economics, 50(2-3), 179-234.
Baker, M., & Wurgler, J. (2006). Investor Sentiment and the Cross‐Section of Stock Returns. The Journal of Finance, 61(4), 1645-1680.
Bikhchandani, S., & Sharma, S. (2000). Herd Behavior in Financial Markets. IMF Staff papers, 47(3), 279-310.
 Chang, E. C., Cheng, J. W., & Khorana, A. (2000). An Examination of Herd Behavior in Equity Markets: An International Perspective. Journal of Banking & Finance, 24 )10), 1651-1679.
Chiang, T. C., & Zheng, D. (2010). An Empirical Analysis of Herd Behavior in Global Stock Markets. Journal of Banking & Finance, 34(8), 1911-1921.
Choi, N., & Sias, R. W. (2009). Institutional Industry Herding. Journal of Financial Economics, 94(3), 469-491.
Christie, W. G., & Huang, R. D. (1995). Following the Pied Piper: Do Individual Returns Herd around the Market? Financial Analysts Journal, 51(4), 31-37.
De la Horra, L. P., Perote, J., & De La Fuente, G. (2021). Monetary Policy and Corporate Investment: A Panel-Data Analysis of Transmission Mechanisms in Contexts of High Uncertainty. International Review of Economics & Finance, 75, 609-624.
Deng, X., Hung, S., & Qiao, Z. (2018). Mutual Fund Herding and Stock Price Crashes. Journal of Banking & Finance, 94, 166-184.
Devenow, A., & Welch, I. (1996). Rational Herding in Financial Economics. European Economic Review, 40(3-5), 603-615.
Espinosa-Méndez, C., Araya-Castillo, L., Jara Bertín, M., & Gorigoitía, J. (2021). International Diversification, Ownership Structure and Performance in an Emerging Market: Evidence from Chile. Economic Research-Ekonomska Istraživanja, 34(1), 1202-1223.
Farhadi, H., Nadiri, M., & Saranj, A. (2022). Investigating the Effect of Herd Behavior in the Iranian Economy on the Efficiency Criteria of the Asset Pricing Model. Islamic Economics & Banking, 11(38), 113-136.
Fratzscher, M., Lo Duca, M., & Straub, R. (2016). Ecb Unconventional Monetary Policy: Market Impact and International Spillovers. IMF Economic Review, 64, 36-74.
Gaballo, G. (2016). Rational Inattention to News: The Perils of Forward Guidance. American Economic Journal: Macroeconomics, 8(1), 42-97.
Galariotis, E., Makrichoriti, P., & Spyrou, S. (2018). The Impact of Conventional and Unconventional Monetary Policy on Expectations and Sentiment. Journal of Banking & Finance, 86, 1-20.
Gambacorta, L., Hofmann, B., & Peersman, G. (2014). The Effectiveness of Unconventional Monetary Policy at the Zero Lower Bound: A Cross‐Country Analysis. Journal of Money, Credit and Banking, 46(4), 615-642.
GhaziAskari, S., Neshat, N., & Jafari Nodoushan, A. (2022). Sustainable Policy-Making of Financial Systems in Crisis Situations with Modelling Based on Artificial Neural Networks. Financial Management Perspective, 12(38), 103-129. https://doi.org/10.52547/jfmp.12.38.103
Gong, P., & Dai, J. (2017). Monetary Policy, Exchange Rate Fluctuation, and Herding Behavior in the Stock Market. Journal of Business Research, 76, 34-43.
Hau, H., & Rey, H. (2006). Exchange Rates, Equity Prices, and Capital Flows. The Review of Financial Studies, 19(1), 273-317.
Heidari, H., & Farzanegan, E. (2021). Evaluating the Herding Effect on Idiosyncratic Volatility in the Industries of the Tehran Stock Exchange. Financial Accounting Research, 13(2), 57-77. https://doi.org/10.22108/far.2021.125918.1690
Hong, H., & Stein, J. C. (1999). A Unified Theory of Underreaction, Momentum Trading, and Overreaction in Asset Markets. The Journal of Finance, 54(6), 2143-2184.
Hsieh, S.-F., Chan, C.-Y., & Wang, M.-C. (2020). Retail Investor Attention and Herding Behavior. Journal of Empirical Finance, 59, 109-132.
Hwang, S., & Salmon, M. (2009). Sentiment and Beta Herding. SSRN: http://ssrn. com/abtract, 299919.
Khan, A. (2018). A Behavioral Approach to Financial Supervision, Regulation, and Central Banking. International Monetary Fund.
KOMIJANI, A., & HAERI, M. (2013). The Role of Housing Prices in the Transmission Mechanism of Monetary Policy. Economic Strategy, 2(5), -. https://econrahbord.csr.ir/article_103234_67409ce1314762b44982e8dc8b461931.pdf
Koushki, A., Osoolian, M., & Sharif, S. J. S. (2023). An Uncertainty Measure Based on Pearson Correlation as Well as a Multiscale Generalized Shannon-Based Entropy with Financial Market Applications. International Journal of Nonlinear Sciences and Numerical Simulation, 24(5), 1821-1839. https://doi.org/doi:10.1515/ijnsns-2021-0096
Kremer, S., & Nautz, D. (2013). Causes and Consequences of Short-Term Institutional Herding. Journal of Banking & Finance, 37(5), 1676-1686.
Krokida, S.-I., Makrychoriti, P., & Spyrou, S. (2020). Monetary Policy and Herd Behavior: International Evidence. Journal of Economic Behavior & Organization, 170, 386-417.
Lakonishok, J., Shleifer, A., & Vishny, R. W. (1992). The Impact of Institutional Trading on Stock Prices. Journal of Financial Economics, 32(1), 23-43.
Li, Z., Diao, X., & Wu, C. (2022). The Influence of Mobile Trading on Return Dispersion and Herding Behavior. Pacific-Basin Finance Journal, 73, 101767.
Masciandaro, D., & Romelli, D. (2019). Behavioral Monetary Policymaking: Economics, Political Economy and Psychology. Behavioral Finance: The Coming Of Age, 285.
 Mirhasheminasab, S. A., Mohamadzadeh, A., Mohammadnoorbakhsh Langaroodi, M., & Akhoondi, N. (2019). A Model for Syntactic Investigation between Risk Taking, Personal and Cultural Properties on Herding Behavior in Tehran Stock Exchange. Financial Management Perspective, 9(28), 65-90. https://doi.org/10.52547/jfmp.9.28.65
Mohamadi, M., Azimi Yancheshme, M., Fouladi, M., & Farhadi, M. (2022). Designing a Model to Explain the Impact of Investors' Emotions on Financial Decisions, Stock Returns and Economic Volatility. Financial Management Perspective, 12(40), 145-171. https://doi.org/10.52547/jfmp.12.40.145
Mohanty, M. S. (2014). The Transmission of Unconventional Monetary Policy to the Emerging Markets-an Overview. BIS Paper(78a).
 Osoolian, M., & Koushki, A. (2021). Financial Market Risk Analysis before the Pandemic and During the Covid-19 Period. Strategic Studies of public policy, 11(40), 210-226. https://sspp.iranjournals.ir/article_247495_9cc76f9d49fc66892eaeb1a7f7e99a08.pdf
 Osoolian, M., & Koushki, A. (2020). Investigating the Crisis Forecasting Ability of the Cumulative Residual Entropy Measure by Using Logistic Map Simulation Data and Tehran Stock Exchange Overall Index. Financial Management Perspective, 10(31), 9-27. https://doi.org/10.52547/jfmp.10.31.9
Osoolian, M., & Koushki, A. (2021). Prediction of Crisis in Tehran Stock Exchange with Entropy and Analyzing the Identified Crises Such as Covid-19 [Research]. Planning and Budgeting, 26(2), 133-152. https://doi.org/10.52547/jpbud.26.2.133
Plakandaras, V., Gupta, R., Balcilar, M., & Ji, Q. (2022). Evolving United States Stock Market Volatility: The Role of Conventional and Unconventional Monetary Policies. The North American Journal of Economics and Finance, 60, 101666.
 Shams, S., & Esfandiari Moghadam, A. T. (2018). The Relationship between Mass Behavior and the Performance and Characteristics of Investment Companies. Financial Accounting and Auditing Research, 10(38), 47-66. https://faar.ctb.iau.ir/article_543478_d4357f6dc8d18bec81fb1a69a119e397.pdf
Shirazian, Z. (2019). Investigating of Effect Herding Behavior Types among Analysts on Stock Price by Network Analysis in Tehran Stock Exchange. Journal of Investment Knowledge, 8(30), 19-36. https://jik.srbiau.ac.ir/article_14422_1be1c1576a4f2b3b28f6a6d915bac0d4.pdf
Soroushyar, A., & Ali Ahmadi, S. (2016). The Investigation of the Role of Momentum and Investors' Sentiments on the Herding Behavior in Tehran Stock Exchange. Journal of Investment Knowledge, 5(18), 147-159. https://jik.srbiau.ac.ir/article_8622_44839f07444152971c33130d95980ae8.pdf
Tillmann, P. (2016). Unconventional Monetary Policy and the Spillovers to Emerging Markets. Journal of International Money and Finance, 66, 136-156.
Yang, Y., Peng, F., Wang, R., Guan, K., Jiang, T., Xu, G., Sun, J., & Chang, C. (2020). The Deadly Coronaviruses: The 2003 Sars Pandemic and the 2020 Novel Coronavirus Epidemic in China. Journal of Autoimmunity, 109, 102434.
Yang, Z., Lu, Y., & Tan, W. (2021). Monetary Policy Tightening, Accounting Information Comparability, and Underinvestment: Evidence from China. Economic Analysis and Policy, 70, 123-147.
Zhang, R., Yang, X., Li, N., & Khan, M. A. (2021). Herd Behavior in Venture Capital Market: Evidence from China. Mathematics, 9(13), 1509.