بررسی دستکاری قیمت‌ها در بازار بورس ایران با استفاده از مدل ترکیبی خودرمزگذار متغیر-حافظه کوتاه مدت طولانی

نوع مقاله : علمی - پژوهشی

نویسندگان

1 دانشجوی دکتری مهندسی مالی، واحد قم، دانشگاه آزاد اسلامی، قم، ایران.

2 استادیار، گروه مدیریت سیستم و بهره‌وری، دانشگاه تربیت مدرس، تهران، ایران.

3 دانشیار، گروه حسابداری، واحد قم، دانشگاه آزاد اسلامی، قم، ایران.

4 استادیار، گروه مدیریت بانک و بیمه، دانشگاه خوارزمی، ایران.

10.48308/jfmp.2024.105131

چکیده

هدف: بازار سرمایه به عنوان یکی از اصلی­ترین بخش­های اقتصادی کشورها، نقش با اهمیتی در توسعه و گسترش فعالیت اقتصادی دارد. با توسعه تکنولوژی و الگوریتم‌های معاملاتی پیچیده، دستکاری سهام با سهولت بیشتری رخ داده و این امر سبب می‌شود تا استفاده از ابزارهای مانند هوش مصنوعی و یادگیری عمیق برای شناسایی دستکاری توسط نهادهای ناظر ناگزیر باشد. هدف از این پژوهش، شناسایی دستکاری سهام در بازار بورس ایران است. برای این کار از اطلاعات 73 سهم از 19 صنعت پذیرش شده در بورس طی 1398 الی 1402، روزهای معاملاتی تقریبی 71،300 استفاده شده است.
روش: شناسایی دستکاری در معاملات سهام به دلیل همبستگی‌ زمانی داده‌های قیمت سهام و پویا بودن آن، چالش مهمی را به وجود می‌آورد. این چالش با در دسترس نبودن داده‌های برچسب‌گذاری‌شده نیز تشدید می‌شود. از این رو باتوجه به عدم اعلام سهام دستکاری شده توسط ناظر بورس در بازار ایران، شناسایی داده‌ها: 1) آزمون‌های آماری مانند بازدهی غیرنرمال، سهام دستکاری شده و تاریخ دقیق دستکاری مشخص شده است. 2) داده‌های تصادفی با شبیه‌سازی الگوی دستکاری سهم، به سری زمانی سهامی که با اطمینان بالایی در آن‌ها دستکاری رخ نداده (پرسشنامه خبرگان)، تزریق شده است. در گام بعدی با استفاده از ترکیب مدل‌های خودرمزگذار متغیر و حافظه کوتاه مدت طولانی، الگوریتم VAE- LSTM برای مقایسه با برخی مدل‌ها یادگیری ماشین از قبیل درخت تصمیم، جنگل تصادفی، رگرسیون لجستیک و.. طراحی گردیده‌ که احتمال دستکاری سهم را محاسبه می‌نماید.
یافته‌ها: پس از اجرای مدل‌های یادگیری عمیق شاخص‌های دقت و بازخوانی و  F1 و F2  محاسبه شد. به دلیل اینکه در بازار سرمایه دسته‌بندی سهام دستکاری شده و نشده از اهمیت یکسانی برخوردار نیست، برای رتبه‌بندی مدل‌ها از شاخص ارزیابی عملکردی F2 استفاده شده است. به ترتیب مدل‌های VAE-LSTM، درخت تصمیم، جنگل تصادفی، شبکه عصبی چندلایه، ماشین‌بردار پشتیبان، رگرسیون لجستیک عملکردی بهتری از خود نشان دادند. مقدار حدودی F2 مدل‌های مذکور به ترتیب : 72درصد، 69درصد، 50درصد، 41درصد، 40درصد و 26درصد است.
نتیجه‌گیری: در نهایت مدل پیشنهاد شده براساس شاخص ارزیابی عملکرد F2 نسبت به سایر مدل‌ها توانایی بهتری در شناسایی دستکاری از خود نشان داده است. ذکر این نکته ضروری است که سایر مدل‌های یادگیری ماشین استفاده شده در این پژوهش نیز عملکرد مناسبی به خصوص در شاخص ارزیابی دقت داشته اما متأسفانه از نظر شاخص عملکردی بازخوانی که مهم‌تر می‌باشد، عملکرد ضعیف تری داشته‌اند. پس از تعیین مدل پیشنهادی به عنوان مدل برگزیده، براساس شاخص کل بورس تهران، دوره صعودی بازار سرمایه را در بازه زمانی 01/12/1398 تا 31/05/1399، دوره نزولی بازار سرمایه را در بازه زمانی 21/05/1399 تا 20/08/1399 و سال 1400 را به عنوان دوره تعادل بازار سرمایه در نظر گرفته‌ایم که مطابق با انتظار، احتمال دستکاری به ترتیب در بازارهای صعودی، متعادل و نزولی بیشتر است.این نتایج به طور کلی با سایر مطالعات پیشین نیز هم‌سو می‌باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Stock Price Manipulation in the Iran Stock Market Using VAE-LSTM Hybrid Model

نویسندگان [English]

  • Seyed Mohammadreza Habibzadeh 1
  • Mohammad Ail Rastegar 2
  • Reza Golami Jamkarni 3
  • Sayyed Kazem Chavoshi 4
1 Ph.D. Candidate in Financial Engineering , Qom branch, Islamic Azad University, Qom, Iran.
2 Assistant Prof., Department of System and Productivity Management, Tarbiat Modares University, Tehran, Iran
3 Assistant Prof., Department of Accounting, Qom branch, Islamic Azad University, Qom, Iran.
4 Assistant Prof., Department of Financial Management, University of Kharazmi, Tehran, Iran.
چکیده [English]

Purpose: The stock market, as one of the main economic sectors of countries, plays an important role in the development and expansion of economic activity. With the development of technology and complex trading algorithms, stock manipulation has become more easily, which makes the use of tools such as artificial intelligence and deep learning to identify manipulation by supervise institutions inevitable. The aim of this research is to identify stock manipulation in the Iran stock market. For this purpose, information on 73  stocks from 19  industries admitted to the stock exchange during 1398 to 1402, approximately 71,300 trading days, was used.
Method: Identifying manipulation in stock transactions poses a significant challenge due to the temporal correlation of stock price data and its dynamic. This challenge is also exacerbated by the unavailability of labeled data. Therefore, given the lack of announcement of manipulated stocks by the stock exchange supervise in the Iran stock market, data identification: 1) Statistical tests such as abnormal returns, manipulated stocks, and the exact date of manipulation have been determined. 2) Random data simulating the stock manipulation pattern has been injected into the time series of stocks that have not been manipulated with high confidence (expert questionnaire). In the next step, using a combination of variable autoencoding models and long short-term memory, the VAE-LSTM algorithm has been designed to compare with some machine learning models such as decision tree, random forest, logistic regression, etc., which calculates the probability of stock manipulation.
Findings: After running the models, the accuracy and recall indices and F1 and F2 were calculated. Because in the stock market, the classification of manipulated and unmanipulated stocks is not of equal importance, the performance evaluation index F2  has been used to rank the models. In order, the VAE-LSTM, decision tree, random forest, multilayer neural network, support vector machine, and logistic regression models showed better performance. The approximate F2  values ​​of the mentioned models are: 72%, 69%, 50%, 41%, 4%  and 26%, respectively. Findings: After implementing the deep learning models, the accuracy and recall indices and F1 and F2 were calculated. Because in the capital market, the classification of manipulated and unmanipulated stocks is not of equal importance, the performance evaluation index F2 was used to rank the models. The VAE-LSTM, decision tree, random forest, multilayer neural network, support vector machine, and logistic regression models performed better, respectively. The approximate F2 values ​​of the aforementioned models were: 72%, 69%, 50%, 41%, 40%, and 26%. After the VAE-LSTM hybrid model, the decision tree model is ranked next, which also has a good balance between the accuracy and recall indices. This indicates that perhaps one of the most effective ways to identify manipulation is to use predetermined rules that are extracted by decision tree models and can be updated at different time intervals.
Conclusion: Finally, the proposed model based on the F2 performance evaluation index has shown a better ability to detect manipulation than other models. It is important to note that other machine learning models used in this study also performed well, especially in the accuracy evaluation index, but unfortunately, they performed poorly in terms of the more important recall performance index. After determining the proposed model as the selected model, based on the Tehran Stock Exchange's total index, we considered the capital market's bullish period in the period from 1398/12/01 to 1399/05/31, the capital market's bearish period in the period from 1399/05/21 to 1399/08/20, and the year 1400 as the capital market's equilibrium period. As expected, the probability of manipulation is higher in bullish, balanced, and bearish markets, respectively. These results are generally consistent with other previous studies. The results are conceptually consistent with reality. Since short selling is not possible in the Iranian capital market, manipulators can only make a profit by manipulating by “raising the price and emptying” and it is not possible to use the manipulation method of “lowering the price and buying back”. Therefore, in a bear market, creating a trend change in the capital market requires a lot of resources, which reduces the incentive to manipulate the share.

کلیدواژه‌ها [English]

  • Capital market
  • Stock price manipulation
  • Deep learning
  • VAE - LSTM
Purpose: The stock market, as one of the main economic sectors of countries, plays an important role in the development and expansion of economic activity. With the development of technology and complex trading algorithms, stock manipulation has become more easily, which makes the use of tools such as artificial intelligence and deep learning to identify manipulation by supervise institutions inevitable. The aim of this research is to identify stock manipulation in the Iran stock market. For this purpose, information on 73  stocks from 19  industries admitted to the stock exchange during 1398 to 1402, approximately 71,300 trading days, was used.
Method: Identifying manipulation in stock transactions poses a significant challenge due to the temporal correlation of stock price data and its dynamic. This challenge is also exacerbated by the unavailability of labeled data. Therefore, given the lack of announcement of manipulated stocks by the stock exchange supervise in the Iran stock market, data identification: 1) Statistical tests such as abnormal returns, manipulated stocks, and the exact date of manipulation have been determined. 2) Random data simulating the stock manipulation pattern has been injected into the time series of stocks that have not been manipulated with high confidence (expert questionnaire). In the next step, using a combination of variable autoencoding models and long short-term memory, the VAE-LSTM algorithm has been designed to compare with some machine learning models such as decision tree, random forest, logistic regression, etc., which calculates the probability of stock manipulation.
Findings: After running the models, the accuracy and recall indices and F1 and F2 were calculated. Because in the stock market, the classification of manipulated and unmanipulated stocks is not of equal importance, the performance evaluation index F2  has been used to rank the models. In order, the VAE-LSTM, decision tree, random forest, multilayer neural network, support vector machine, and logistic regression models showed better performance. The approximate F2  values ​​of the mentioned models are: 72%, 69%, 50%, 41%, 4%  and 26%, respectively. Findings: After implementing the deep learning models, the accuracy and recall indices and F1 and F2 were calculated. Because in the capital market, the classification of manipulated and unmanipulated stocks is not of equal importance, the performance evaluation index F2 was used to rank the models. The VAE-LSTM, decision tree, random forest, multilayer neural network, support vector machine, and logistic regression models performed better, respectively. The approximate F2 values ​​of the aforementioned models were: 72%, 69%, 50%, 41%, 40%, and 26%. After the VAE-LSTM hybrid model, the decision tree model is ranked next, which also has a good balance between the accuracy and recall indices. This indicates that perhaps one of the most effective ways to identify manipulation is to use predetermined rules that are extracted by decision tree models and can be updated at different time intervals.
Conclusion: Finally, the proposed model based on the F2 performance evaluation index has shown a better ability to detect manipulation than other models. It is important to note that other machine learning models used in this study also performed well, especially in the accuracy evaluation index, but unfortunately, they performed poorly in terms of the more important recall performance index. After determining the proposed model as the selected model, based on the Tehran Stock Exchange's total index, we considered the capital market's bullish period in the period from 1398/12/01 to 1399/05/31, the capital market's bearish period in the period from 1399/05/21 to 1399/08/20, and the year 1400 as the capital market's equilibrium period. As expected, the probability of manipulation is higher in bullish, balanced, and bearish markets, respectively. These results are generally consistent with other previous studies. The results are conceptually consistent with reality. Since short selling is not possible in the Iranian capital market, manipulators can only make a profit by manipulating by “raising the price and emptying” and it is not possible to use the manipulation method of “lowering the price and buying back”. Therefore, in a bear market, creating a trend change in the capital market requires a lot of resources, which reduces the incentive to manipulate the share.