تحلیل شاخص کل با رهیافت آنتروپی

نوع مقاله : علمی - پژوهشی

نویسندگان

1 استادیار دانشکده مدیریت و حسابداری دانشگاه شهید بهشتی

2 استادیار دانشکده فیزیک ، دانشگاه شهید بهشتی

3 دانشجوی کارشناسی ارشد دانشگاه شهید بهشتی

چکیده

تحلیل و پیش­بینی حرکت شاخص قیمت بورس از جمله مسائلی است که همواره تحلیلگران و سرمایه­گذاران با آن مواجه هستند و با استفاده از ابزارهای مختلفی به این مهم می­پردازند. با توجه به مشابهت بازارهای مالی با پدیده­های فیزیکی می­توان با در­نظرگرفتن بازار به‌عنوان یک سیستم پیچیده، روابط موجود در آن را از این منظر مطالعه کرد. یکی از مفاهیم این حوزه، آنتروپی است که عدم­قطعیت و پیچیدگی سیستم پویا را اندازه‌گیری می­کند. در این پژوهش رفتار شاخص کل سهام «بورس اوراق بهادار تهران» با استفاده از تکنیک آنتروپی چندمقیاسی شانون تحلیل شده است؛ بدین منظور ابتدا با استفاده از قیمت پایانی سهام شرکت­های بورسی در بازه زمانی سال­های 1392 تا 1396، آنتروپی در بازه­های زمانی ماهانه، فصلی، شش­ماهه و سالانه و در دو مقیاس 50- و 50 محاسبه شد و سپس وجود رابطه علیت گرنجری بین این سری­ها و شاخص کل با استفاده از آزمون تودا-یاماموتو موردبررسی قرار گرفت. نتایج پژوهش نشان می­دهد که آنتروپی­های ، ، ،  و  علت خطی شاخص بورس هستند؛ به­عبارت­دیگر اطلاعات اصلی در بازه‌های زمانی ماهانه، فصلی، شش­ماهه و سالانه، همچنین نوسانات کوچک در بازه فصلی، علت خطی شاخص کل هستند.

کلیدواژه‌ها


عنوان مقاله [English]

Stock market index analysis with entropy approach

نویسندگان [English]

  • Mohammad Osoolian 1
  • Seyyed Ali Hoseyni Esfidavajani 2
  • Mobina Bagheri 3
1 assistant professor
2 assistant professor
3 Master student of Shahid Beheshti University
چکیده [English]

Analyzing and predicting the movement of the stock price index is one of the issues that analysts and investors face it and use various tools to do it. Considering the similarity of financial markets with physical phenomena, it is possible to study the relations existing in market as a complex system. One of the concepts in this area is entropy that measures the uncertainty and complexity of the dynamic system. In this research, the behavior of the Tehran Exchange Divedend and Price Index (TEDPIX) has been analyzed using Shannon's multiscale entropy technique. For this purpose, at the beginning, using the close price of stocks of Tehran Exchange's companies during the period from 2013 to 2017, entropy is calculated in monthly, seasonal, six-month, and annual periods, and in two scale, 50-50. Then, the existence of a grained causality relationship between these series and the TEDPIX was investigated using the Toda-Yamamoto test. The results of this study indicate that some Entropies are the linear cause of the stock index. In other words, the main information in the annual, six-month and seasonal periods, and small fluctuations in the seasonal period, is the linear cause of the TEDPIX.

کلیدواژه‌ها [English]

  • TEDPIX
  • Shannon multi-scale entropy
  • Toda and Yamamoto causality test
  1. Abdoh Tabrizi, H., & Gonabadi, M. (1996). Doubtfulness in the validity of financial models. Accountants, 11(115), 13-20) In Persian(.
  2. Amirzadeh Goghari, E. (2016). Analysis of financial crisis using transfer entropy approach. Master's thesis , Shahid Beheshti University, Tehran) In Persian(.
  3. Bajalan, S., Fallahpour, S., & Dana, N. (2017). stock price trend prediction using modified support vector machine with hybrid feature selection. . Financial Management prespective, 7(17) ,69-86 )In Persian(.
  4. Caraiani, P. (2014). The predictive power of singular value decomposition entropy for stock market dynamics. Physica A: Statistical Mechanics and its Applications, 393, 571-578.
  5. Clausius, R. (1865). Über verschiedene für die Anwendung bequeme Formen der Hauptgleichungen der mechanischen Wärmetheorie. Annalen der Physik, 201(7), 353-400.
  6. Eom, C., Oh, G., & Jung, W. S. (2008). Relationship between efficiency and predictability in stock price change. Physica A: Statistical Mechanics and its Applications, 387(22), 5511-5517.
  7. Gandom Kar, H. (2001). Investigating the Relationship between Balance Sheet Changes and Risk. Master's thesis, Accounting, Tehran University, Tehran )In Persian(.
  8. Gasbarian, A. (1998) Relationship of financial status entropy with systematic beta risk. Master's thesis, Accounting, Shahid Beheshti University, Tehran.) In Persian(
  9. Gu, R. (2017). Multiscale Shannon entropy and its application in the stock market. Physica A: Statistical Mechanics and its Applications, 484, 215-224.
  10. Gu, R., Xiong, W., & Li, X. (2015). Does the singular value decomposition entropy have predictive power for stock market?—Evidence from the Shenzhen stock market. Physica A: Statistical Mechanics and its Applications, 439, 103-113.
  11. Gulko, L. (1997). Dart Boards and Asset Prices: Introducing the Entropy Pricing Theory. Chapter 14 in Advances in Econometrics, TB Fomby and RC Hill, eds.
  12. Hassan Nejad, M. (2018). Designing the Tehran Stock Exchange Stock Exchanging Prediction Model Using the auto regression moving average models (ARMA) and auto regressive moving average with exigenous inputs model(ARMAX) and their performance evaluation. Financial Management prespective, 8(22), 135-158) In Persian(.
  13. Hosseini, A. (2016). An Entropy Index Analysis in the Prospect of Stock Returns in Tehran Stock Exchange. Master's Theses, Business Management. ) in Persian(
  14. Lev, B., (1971), “Financial Failure and Information Decomposition Medsures Western publishing co.”, Cincinnati – ohaio , p.102
  15. Liu, R., Di Matteo, T., & Lux, T. (2008). Multifractality and long-range dependence of asset returns: the scaling behavior of the Markov-switching multifractal model with lognormal volatility components. Advances in Complex Systems, 11(05), 669-684) In Persian(.
  16. Ormos, M., & Zibriczky, D. (2014). Entropy-based financial asset pricing. PloS one, 9(12), e115742.
  17. Philippatos, G. C., & Wilson, C. J. (1972). Entropy, market risk, and the selection of efficient portfolios. Applied Economics, 4(3), 209-220.
  18. Raei, R., & Chavoshi, K. (2003). Estimation of Stock Returns in Tehran Stock Exchange: Modeling of Artificial Neural Networks and Multivariate Model. Journal of Financial Research, 5(15), 97-120) In Persian(.
  19. Shannon, Claude E. (1948). A Mathematical Theory of Communication. Bell System Technical Journal, 27, 379-423.
  20. Soltani Nejad, S. (2014). Investigating the Predictability of Fundamental Analysis on Future Futures of Shares Adjusted on the Size of the Companies Accepted in Tehran Stock Exchange. The First National Conference on Management and Accounting Standards The New World of Business, Economics and Culture) In Persian(.
  21. Souri, Ali (1396). Econometrics (Advanced), with the use of Eviews and Stata (6th edition). Tehran: Nashre Farhang Shenasi. (In Persian(
  22. Taghizadeh, Mohtashami Barzadaran, & Amini. (August 2018). Entropy measurement for evaluating Unstable Exchange indices. 14th Iranian Statistics Conference (In Persian(.
  23. Theil, H. (1969). On the use of information theory concepts in the analysis of financial statements. Management science, 15(9), 459-480.
  24. Toda, H. Y., & Yamamoto, T. (1995). Statistical inference in vector autoregressions with possibly integrated processes. Journal of econometrics, 66(1-2), 225-250.
  25. Usta, I., & Kantar, Y. M. (2011). Mean-variance-skewness-entropy measures: A multi-objective approach for portfolio selection. Entropy, 13(1), 117-133.
  26. www.seo.ir
  27. Xu, J., Zhou, X., & Wu, D. D. (2011). Portfolio selection using λ mean and hybrid entropy. Annals of operations research, 185(1), 213-229.
  28. Yu, J. R., Chiou, W. J. P., Lee, W. Y., & Yu, K. C. (2017). Does entropy model with return forecasting enhance portfolio performance?. Computers & Industrial Engineering, 114, 175-182
  29. Zandieh, M., & Khami, M. (2016). Stock prediction Using the combination of hidden Markov model and Markov chain. Financial Management perspective, 5(4), 27-40) In Persian(.
  30. Zhou, R., Wang, X., Dong, X., & Zong, Z. (2013). Portfolio selection model with the measures of information Entropy-incremENTal Entropy-skewness. Advances in Information Sciences and Service Sciences, 5(8), 833.