توسعه معیار پایدار ردیابی شاخص کل بورس اوراق بهادار تهران

نوع مقاله : علمی - پژوهشی

نویسندگان

1 دانشیار، گروه مالی و بانکداری، دانشگاه علامه‌طباطبائی، تهران، ایران.

2 استادیار، گروه مالی و بانکداری، دانشگاه علامه‌طباطبائی، تهران، ایران.

3 دانشجوی دکتری، گروه مالی و بانکداری، دانشگاه علامه‌طباطبائی، تهران، ایران

چکیده

برای سرمایه‌گذاری در یک شاخص منتخب گام اول تشکیل یک سبد ردیاب  است. این کار ردیابی شاخص است. در این پژوهش، ابتدا نقش کلیدی معیارهای کیفیت ردیابی در تشکیل سبد ردیاب  بر اساس روش بهینه‏سازی مبتنی بر نمونه‏گیری ارایه می‏شود. سپس یک معیار جدید کیفیت ردیابی، به نام معیار کیفیت ردیابی محقق (RTQ) برای ردیابی شاخص معرفی می‏شود. در ادامه، کیفیت ردیابی سبدهای ردیاب بر اساس معیارهای کیفیت ردیابی سنتی نوسان خطای ردیابی (TEV)، میانگین مجذور خطاها (MSE)، و میانگین انحراف مطلق (MAD) و معیار معرفی شده (کیفیت ردیابی محقق(RTQ) با دو روش مختلف minmax و CVAR محاسبه می‏شوند. به این ترتیب مزایا و معایب معیار معرفی شده در مقایسه با معیارهای سنتی بررسی و نهایتا معیار پایدارتر معرفی می‏شود. بنابراین، تمرکز این پژوهش بر پایداری و ثبات معیارهای ردیابی است. در نهایت مشخص شد که با بهبود متغیرهای ارزیابی ثبات، چگونگی تشکیل پرتفوی ردیاب نیز بهبود می‏یابد. قلمرو مکانی این پژوهش بورس اوراق بهادار تهران و جامعه آماری آن شامل کلیه شرکت‌های پذیرفته شده در بورس است. قلمرو زمانی پژوهش نیز از ابتدای مهر ماه سال 1391 لغایت شهریورماه سال 1396 به مدت پنج سال می‌باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Development of a Stable Tracking Measure for Tehran Stock Exchange

نویسندگان [English]

  • Mohammad Hashem Botshekan 1
  • Mohammad Mahdi bahrololoum 2
  • Amir Hossein Erza 2
  • Amir Taghikhan Tajrishi 3
1 Associate Prof, Department of Finance and Banking, Allameh Tabataba'i University, Tehran, Iran.
2 Assistant Prof, Department of Finance and Banking, Allameh Tabataba'i University, Tehran, Iran.
3 PhD. Candidate, Department of Finance and Banking, Allameh Tabataba'i University, Tehran, Iran.
چکیده [English]

 Because an index cannot be purchased directly, it has to be rebuilt by a portfolio which is an approximation of Index. This is called index tracking. In this research, first we discuss the vital role of Tracking Quality measurments for developing tracking portfolio via optimization based on sampling. Then we introduce a new measurement, Realized Tracking Quality (RTQ) and compare it with traditional measurements. Comparison of Realized Tracking Quality (RTQ) and three traditional measurements of producing tracking portfolios (Tracking Error Variance (TEV), Mean Squared Error (MSE) and Mean Absolute Deviation (MAD)) shows that there are significant differences in their anticipated values. In other words, we  make  a  comparison  of  the  approaches  to  index  tracking and highlighting  their advantages and disadvantages. Unlike other researches on rebuilding of tracking portfolio, this framework specifically addresses issues of stability of the tracking quality measurements, whether they produce tracking portfolios with the same tracking quality in the estimation period and the investment period or not. In fact, we were not looking for a method that would create the best tracking portfolio with the highest tracking quality; instead, this study attempted to compare the results of the estimation period with the investment period and determine which one would be more stable. The results indicate that Producing tracking portfolio will be optimized by improving stability measurements. For our analysis, we use Tehran Stock Exchange Index having all listed companies. The time period includes 5 years, between September 2012 and September 2017.

کلیدواژه‌ها [English]

  • Index Tracking
  • Tracking Error
  • Stability of Tracking Portfolio
  • Tracking Quality Measurement
  1. Aghasi, S., Aghasi, A., & Biglari, S. (2015). Selection of Investor's Equity Portfolio Based on the Correlation Analysis for Tehran Stock Exchange Companies. The Journal of Financial Knowledge of Securities Analysis, (36), 119-131. (In Persian).
  2. Bahrololoum, M., Fallahshams, F., Blue, GH. (2014). A robust linear programming model for index fund construction. Industrial Management Studies, 13(39), 91-114. (In Persian).
  3. Bahrololoum, M., Tehrani, R., Hanifi, F. (1391). Design a heuristic algorithm for tracking portfolio of TSE. The Journal Accounting and Auditing Research, (13), 20-43. (In Persian).
  4. Bachelier, L. (1900). Theory of speculation. Gauthier-Villars.
  5. Beasley, J.E, Meade, N. & Chang, T.J. (2003). An evolutionary heuristic for the index tracking problem. European Journal of Operational Research, 148, 621–643.
  6. Bogle, J.C. (2001). John Bogle on investing: the first 50 years. McGraw-Hill.
  7. Cowles 3rd, A. (1933). Can stock market forecasters forecast? Econometrica: Journal of the Econometrics Society, 1, 309-324.
  8. Dornbusch, R., Fischer, S., & Samuelson, P.A. (1977). Comparative advantage, trade, and payments in Ricardian model with a continuum of goods. The American Economic review, 67(5), 823-839.
  9. Fama, E. F. (1991). Efficient capital markets. The journal of finance, 46(5), 1575-1617.
  10. Fallahpour, S., Tondnevis, F,. & Hashemi, S. (1394). Optimization of Indicator Tracker Portfolio Using the Sustainable Single Indicator Based on the Index of 50 Active Companies of Tehran Stock Exchange. The Journal of Financial engineering and securities management, (24), 115-134. (In Persian).
  11. Haniifi, Bahrololoum, Javadi (2009). Design and comparative analysis of heuristic algorithms for index investment in TSE. Journal of Business Management, 32, 89-108. (In Persian).
  12. Kwon, W. (2017). Factor-based robust index tracking. The Journal of Optimization and Engineering, 18, 443–466
  13. Malkiel, B.G. (1973). A Random Walk Down Wall Street. Published by W. W. Norton & Company, Inc.
  14. Markowitz, H. (1952). Portfolio Selection. The Journal of Finance, 7(1), 77-91.
  15. Meade, N., Salkin, G.R., 1990. Developing and maintaining an equity index fund. Journal of the Operational Research Society, 41(7), 599-607.
  16. Montfort, K., Visser, E., van Draat, L.F., 2008. Index tracking by means of optimized sampling. The Journal of Portfolio Management, 34(2), 143-152.
  17. Mutunge, P., Haugland, D. (2018). Minimizing the tracking error of cardinality constrained portfolios. The Journal of Computers & Operations Research, 90, 33-41
  18. Najafi, A., Khorasani, S. (2016). Development of multi target model for optimization of tracking index portfolio. The Journal of Investment Knowledge, (21)6, 113-128 (In Persian).
  19. Pope, P.F., Yadav, P.K. (1994). Discovering errors in tracking error. The Journal of Portfolio Management, 20(2), 27-32.
  20. Roßbach, P., & Karlow, D. (2011). The Stability of Traditional Measures of Index Tracking Quality. Frankfurt School – Working Paper Series.
  21. Roßbach, P., & Karlow, D. (2019). Structural minimization of tracking error. The Journal of Quantitative Finance, (19)3, 356-366.
  22. Rom, B, M., & Ferguson, K, W. (1994). Post-modern portfolio theory comes of age, The Journal of Investing, 11-17.
  23. Samuelson, P.A. (1974). Challenge to judgment. Journal of Portfolio Management, 1(1), 17-19.
  24. Schoenfeld, S.A. and Maeda, K. (2004). Fundamental index portfolio management techniques. In: Active Index Investing: Maximizing Portfolio Performance and Minimizing Risk Through Global Index Strategies, edited by S.A. Schoenfeld. Wiley: Hoboken, NJ, 365–388.
  25. Sobehart, J.R., Keenan, S.C., Stein, R.M. (2000). Benchmarking quantitative default risk models: a validation methodology. Moodys Investors Service.