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Abstract

Introduction: The primary objective of this research is to resolve the fundamental and
critical trade-off between prediction accuracy and computational efficiency in stock price
forecasting models. Despite the ability of advanced deep learning models, such as LSTM
and Transformer, to achieve high accuracy, their heavy processing costs and high latency
present serious challenges for their practical deployment in online, time-sensitive financial
ecosystems. This issue highlights a significant research gap: the absence of an integrated
framework capable of systematically and intelligently optimizing these two conflicting
objectives simultaneously. In response to this need, this study introduces a hybrid, adaptive,
and self-optimizing framework named DE-Optimized AT-M(OS-ELM), specifically
designed to find an optimal balance between these two metrics. The ultimate goal is to
provide a practical and realistic solution that maintains competitive statistical accuracy while
adapting to streaming data with extremely high speed, paving the way for the
operationalization of artificial intelligence in real-time algorithmic trading systems.

Method: The methodology of this research is based on a multi-layered and intelligent
architecture. The proposed framework, DE-Optimized AT-M(OS-ELM), integrates three
key components: (1) Base Learner (OS-ELM): The Online Sequential Extreme Learning
Machine is utilized for fast learning and instantaneous adaptation to new data without
requiring complete retraining. (2) Adaptive Ensemble Structure (AT-M): To enhance
stability and manage noise and "concept drift," multiple OS-ELM models are placed in an
ensemble structure. The weight of each model is dynamically adjusted based on its recent
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performance within a sliding time window, using an "Adaptive Trust-weighted" mechanism.
(3) Optimization Engine (DE): The Differential Evolution algorithm is employed for the
automatic and intelligent optimization of the model's key hyperparameters. The core
innovation of this research is the design of a dual-objective function for the DE algorithm,
which simultaneously minimizes prediction error (RMSE) and computational cost (training
time). For a comprehensive performance evaluation, a 14-year historical dataset (2010-2023)
of five key assets from the US stock market was used. The proposed model was
benchmarked against a diverse set of models, including ARIMA, Random Forest, SVR,
LSTM, and Transformer. Model performance was assessed using multi-dimensional metrics
for both accuracy (RMSE, MAE, R?) and efficiency (training and prediction time), and the
statistical significance of the results was confirmed using the Wilcoxon non-parametric test.

Results and Discussion: The quantitative and qualitative evaluation results demonstrated
that the proposed framework successfully achieved its objectives. In terms of accuracy, the
proposed model delivered highly competitive performance, proving to be statistically
superior or entirely on par with state-of-the-art deep learning models (LSTM and
Transformer) (p < 0.05). Its superiority was particularly evident in the Directional Accuracy
(DA) metric, which is critical for algorithmic trading, with an average of 66.1%. The most
prominent finding emerged in the dimension of computational efficiency; with an average
training time of less than one second, the proposed model registered a speed that was
hundreds of times faster than advanced deep learning models. This dramatic reduction in
computational cost represents a decisive and definitive advantage for practical applications.
Visual analyses also confirmed these findings; the trade-off analysis plot uniquely positioned
the proposed model in the "sweet spot" (high accuracy, low cost), and the rolling error
analysis revealed that the model maintains higher performance stability, especially during
periods of high market volatility.

Conclusion: This research demonstrates that the solution to the accuracy-speed challenge in
financial forecasting does not necessarily lie in greater architectural complexity but rather in
a smart and targeted system engineering approach. The DE-Optimized AT-M(OS-ELM)
framework, by intelligently integrating online learning, adaptive ensembling, and dual-
objective optimization, establishes a systematic and effective balance between accuracy and
efficiency. The model not only achieved accuracy on par with or superior to state-of-the-art
models but did so at a computational cost that is orders of magnitude lower. This
achievement challenges the paradigm of focusing exclusively on complex models and
highlights the importance of designing practical and efficient solutions. The proposed
framework, as a powerful tool, holds significant potential for implementation in algorithmic
trading systems and real-time financial analytics, marking an important step toward the
practical operationalization of artificial intelligence in finance.
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? Feature Engineering
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12 Rate Of Change (ROC)

13 Average Directional Index (ADX)
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2 Input Window Length (or Look-back Period)
3 Data Leakage

4 Fit

* Closing Price

¢ Root Mean Squared Error (RMSE)

7 Mean Absolute Error (MAE)

8 Mean Absolute Percentage Error (MAPE)
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